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Abstract: Retinal layer thickness, evaluated as a function of spatial
position from optical coherence tomography (OCT) images is an important
diagnostics marker for many retinal diseases. However, due to factors such
as speckle noise, low image contrast, irregularly shaped morphological
features such as retinal detachments, macular holes, and drusen, accurate
segmentation of individual retinal layers is difficult. To address this issue,
a computer method for retinal layer segmentation from OCT images is
presented. An efficient two-step kernel-based optimization scheme is
employed to first identify the approximate locations of the individual layers,
which are then refined to obtain accurate segmentation results for the
individual layers. The performance of the algorithm was tested on a set of
retinal images acquired in-vivo from healthy and diseased rodent models
with a high speed, high resolution OCT system. Experimental results show
that the proposed approach provides accurate segmentation for OCT images
affected by speckle noise, even in sub-optimal conditions of low image
contrast and presence of irregularly shaped structural features in the OCT
images.
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1. Introduction

Optical coherence tomography (OCT) is a powerful imaging technique, capable of acquiring
non-invasive, high resolution, 3D images of the structural composition of biological tissue [1,2].
One important biomedical application of OCT is in ophthalmology, where high resolution vol-
umetric retinal imaging allows for clinical diagnosis and investigation of retinal diseases [3].
Morphological characteristics that can be viewed and quantified from OCT tomograms, such as
the thickness of individual intra-retinal layers, the shape, spatial distribution and optical prop-
erties of other structural features such as drusen, cysts, macular holes, and blood vessels, can
be used as markers in retinal disease diagnostics and clinical investigation of retinal diseases.
For example, retinal nerve fiber layer (RNFL) thickness as a function of the spatial position in
the retina is an important marker for the clinical diagnosis of glaucoma [4, 5].

The accurate segmentation and layer thickness measurement of retinal layers from OCT to-
mograms is a fundamental problem which enhances the diagnosis process for retinal disease
analysis [6]. This segmentation step can be very challenging for several reasons. Since OCT is
based on the detection of the interference of partially coherent optical beams, OCT tomograms
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are subject to presence of speckle [7]. Although speckle is dependent on the local optical prop-
erties of the imaged object and includes information of the object’s structural composition, it
also carries out a strong noise component. Speckle noise in OCT images causes difficulty in
the precise identification of the boundaries of layers or other structural features in the image
either through direct observation or use of segmentation algorithms. Furthermore, low optical
contrast in some OCT retinal images, related either to sub-optimal imaging conditions, or ob-
served directly below blood vessels, resulting from the high haemoglobin absorption of light,
can also cause malfunction in the segmentation algorithms or reduce their precision.

Given the difficulty of the problem and the time-consuming nature of manual segmentation
by trained experts, a number of segmentation approaches have been proposed to segment the
individual retinal layers [6, 8–16]. Fernández et al. [6] proposed to first apply complex diffu-
sion filtering to reduce speckle noise and then determine the individual retinal layers based on
intensity peaks. Ishikawa et al. [8] proposed the application of a modified mean filter to reduce
speckle noise and employs an adaptive thresholding scheme based on the reflectivity histogram
of each A-scan line. Similarly, Ahlers et al. [9] employed adaptive thresholding and intensity
peak detection to determine individual retinal layers, with morphological filtering applied to the
thresholded results. However, these methods are sensitive to intensity inconstancy within the
individual layers, which may not be the case in situations characterized by low image contrast
and the presence of blood vessels or other morphological features within the retina. Fabritius
et al. [10] proposed an efficient maximum intensity search-based approach to segmenting the
macular based on identification of the internal limiting membrane (ILM) and the retinal pigment
epithelium (RPE), which is less sensitive to intensity variations. Götzinger et al. [16] attempted
to alleviate some of the issues associated with image contrast variation by utilizing polarization
sensitive OCT (PS-OCT) [17]. While certain layers such as the RPE and the RNFL become
better defined in polarization sensitive OCT images, the disadvantage of this approach is that it
requires a PS-OCT instrument.

Mujat et al. [11] proposed an active contour based method, where Gaussian and anisotropic
diffusion filtering techniques are employed to reduce speckle noise prior to determining the
boundary contour along the RNFL based on the extracted edge gradient information. While
less prone to the effects of illumination variations, this automatic active contour approach is
highly sensitive to the presence of blood vessels and other morphological features of the retina.
Furthermore, the speckle noise reduction methods employed by all of the aforementioned seg-
mentation methods, perform poorly under the high speckle noise associated with OCT retinal
tomograms, and have poor structural and edge preservation under such situations. Therefore,
the previously used combinations of speckle denoising and segmentation algorithms are only
appropriate for segmenting high contrast and well-defined retinal layers such as the retinal
nerve fibre layer or the RPE. Haeker et al. [13] and Niemeijer et al. [14] utilize a minimum-cost
closed set approach to identifying the individual retinal layers based on a linear combination
of domain-specific cost functions. Finally, Garvin et al. [15] employed an optimal graph search
method which attempts to find a closed set in a geometric 3-D graph that minimizes the associ-
ated costs and constraints.

This paper proposes a segmentation algorithm for the segmentation of all intra-retinal layers
in OCT images. The proposed method employs a novel approach that uses an external force
derived from the image gradient through an adaptive vector-valued kernel function to account
for the presence of speckle noise in a direct fashion. A new dynamic programming-based force
balance equation is introduced to identify the continuous retinal layers within the OCT retinal
tomograms. The proposed approach is highly efficient and allows for the segmentation of retinal
layers.
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2. Methods

2.1. Theory

The traditional active contour first proposed by Kass et al. [18] is an energy minimizing spline
v(s),s ∈ [0,1] whose energy functional is defined as,

E =
1∫

s=0


α

(
v
′
(s)

)2
+

(
βv

′′
(s)

)2

︸ ︷︷ ︸
Internal energy

−λ |∇I (v(s))|︸ ︷︷ ︸
External energy


ds, (1)

where α , β and λ are usually implemented as constant weight factors for the internal and
external energies, and ∇I is the gradient of the image. Kass et al. followed an iterative approach
in an Euler framework to find a curve v∗(s) that minimizes E. By replacing −|∇I (v(s))| with
ψ (|∇I (v(s))|) and setting β = 0 [19], the Eq. (1) can be rewritten as,

E =
1∫

s=0

(
α

(
v
′
(s)

)2
+λψ (|∇I (v(s))|)2

)
ds, (2)

where ψ is a strictly decreasing function and can be expressed as,

ψ (x) =
1

1+ τ |x|2 . (3)

where τ is a control constant (set to τ = 5 in our experiments). Caselles et al. [19] introduced a
new approach called the geodesic active contour to minimize the Eq. (2) in a Riemann manifold
as follows,

v = argmin
v




1∫

s=0

ψ (|∇I (v(s))|)
∣∣∣v′(s)

∣∣∣ds


 . (4)

In the discrete domain, Eq. (4) can be represented as

v = argmin
v1,v2···vn

(
q

∑
i=1

ψisi

)
, (5)

where ψi = ψ (|∇I (v(si))|) and si = ‖v(si−1)− v(si)‖2.
There are two main difficulties with solving Eq. (4) in the context of retinal layer segmenta-

tion in OCT imagery. The first main difficulty is in determining the initial conditions such that
the solution converges to the individual retinal layers. The second main difficulty is in setting up
the external force term to account for speckle noise and other artifacts inherent in OCT imagery
in a direct manner to improve segmentation accuracy. To address the first issue associated with
initial conditions, the proposed method employs a sparse dynamic programming method to find
the rough, approximate locations of the retinal layers, which can be described as follows.

Let a sparse trellis be defined on the entire image consisting of Q vertical normals, where
each normal contains U nodes. An example of such a trellis overlayed on an OCT image is
shown in Fig. 1(a) and can be defined mathematically as

v = {v1,v2, · · · ,vn} where n = UQ. (6)
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(a) (b)

Fig. 1. Demonstration of the initial layer local approximation step on an OCT image. (a)
The sparse trellis (red lines with green nodes) is overlayed on the OCT image. A possible
solution for a retinal layer is shown in blue. (b) The approximate locations of the retinal
layers (cyan lines) overlayed on the OCT image.

The goal is to obtain the approximate locations of the z retinal layers v∗m,m = [1,2,3, · · · ,z]
lying on the sparse trellis such that

v∗1 = argmin
v

(siψ i),

v∗2 = argmin
v/∈v∗1

(siψ i),

v∗3 = argmin
v/∈v∗1,v

∗
2

(siψ i),

· · · ,
v∗z = argmin

v/∈v∗1,v
∗
2, ··· ,v∗z−1

(siψ i).

(7)

To solve this constrained optimization problem, a Viterbi-based dynamic programming ap-
proach [20, 21] is employed to obtain the z retinal layers v∗1,v

∗
2,v

∗
3, · · · ,v∗z . The approximate

locations of the retinal layers determined for an OCT image are shown in Fig. 1(b). The ap-
proximate locations of the retinal layers are then used as initial conditions to a set of local
retinal layer optimization problems for determining the precise locations of the retinal layers.

For each layer, a local optimization strategy is employed to determine its precise location in
the OCT image, and can be described as follows. First, a dense trellis V is defined along the
approximate location of the retinal layer v∗. The dense trellis V consists of q discrete normals
with u discrete points each, as shown in Fig. 2, and can be defined as

V =
{

Vi j
}

,
{

xi j,yi j
}

, i ∈ [1,q] , j ∈ [1,u] . (8)

The goal then is to obtain an open curve V ∗
i j which represents the precise location of the retinal

layer boundary from the OCT image. Such an open curve is typically obtained by minimizing
the sum of the product of the external potentials along the boundary ψ(Vi j) and the Euclidian
arc-length ∇(Vi j) as expressed in Eq. (5). However, finding such an optimal boundary in an
exhaustive manner has tremendously high computationally complexity. Therefore, a Viterbi-
based dynamic programming optimization method [20, 21] is used to find such an optimal
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Fig. 2. Demonstration of the precise layer boundary optimization step on an OCT image.
The dense trellis (red lines with green nodes) for a particular retinal layer is overlayed on
the OCT image. The approximate location of the retinal layer used as an initial condition
for the optimization is shown in cyan, while a possible solution for a retinal layer is shown
in blue.

boundary in an efficient manner. The total algorithmic complexity of the proposed two step
dynamic programming method is z(U2Q+u2q).

To address the second difficulty associated with setting up the external force term, the pro-
posed method incorporates an adaptive vector-valued kernel function in the precise layer bound-
ary optimization step to account for speckle noise and other artifacts inherent in OCT imagery
in a direct manner. The two-step kernel based optimization scheme employed by the proposed
segmentation method for determining the optimal boundary representing the retinal layer being
segmented can be described as follows. In the first step, the likelihood of all nodes along a
normal i belonging to a boundary point, denoted as p(I|Vi j), is computed. The position of the
node with maximum probability is marked as vm(s) and can be written as

vm(s) = argmax
j∈[1,u]

(p(I|Vi j)) , i ∈ [1,q] , (9)

where
p(I|Vi j) =

1
Zext

exp(−ψ (Vi j)) , (10)

where term Zext is a normalization constant to make p( f |Vi j) a probability distribution function
along the normal i. In the second step, a smoothness constraint derived from the spatial and
external force distributions is enforced on the boundary vm(s) to account for speckle noise and
other OCT-related artifacts, as well as obtain a continuous boundary along the retinal layer
being segmented. The smoothness constraint is incorporated directly into the boundary vm(s)
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by convolving the boundary with an adaptive kernel function h,

v∗ (s) =
κ∫

−κ

h(k)vm (s− k)dk, (11)

where h(k) is a product of spatial and gradient penalties,

h(k) =
1
zs

exp

(
−

(
vm (s)− vm (s− k)√

2σs

)2
)

1
zt

exp

(
−

(
ψ (vm (s))−ψ (vm (s− k))√

2σt

)2
)

.

(12)
where zs and zt are normalization constants, and the parameters σs and σt represent the spa-
tial and temporal (intensity) standard deviations, respectively. In the experiment, σs = 4 and
σt = 0.1 are used as they provide accurate segmentation results. ψ is computed in a manner
such that the gradient ∇I along the tangent is diffused, while the gradient along the normal
is not diffused at all. To achieve such goal, we regularize image I using an anisotropic dif-
fusion kernel [22] and compute the gradient of the regularized image. The kernel is used to
enforce curve continuity constraints such that a smooth, continuous retinal layer boundary can
be obtained. The regularization parameter K1 = 0.1 and 20 scales are used for the anisotropic
diffusion approach.

2.2. Experimental Verification

To evaluate the effectiveness of the proposed approach to retinal layer segmentation from OCT
retinal tomograms, the method was applied to a set of OCT images acquired in-vivo from
healthy and diseased rodent retina. The images were acquired with a research grade, high speed,
high resolution OCT system operating in the 1060nm wavelength range. A detailed description
of the system can be found in [23]. Briefly, the OCT system utilizes a spectral domain design
and is powered with a super-luminescent diode (Superlum Ltd., λc = 1020nm, ∆λ = 110nm,
Pout = 10mW) and data is acquired with a 47kHz data rate, InGaAs linear array, 1024 pixel
camera (SUI, Goodrich). The OCT system provides 3µm axial and 5µm lateral resolution in
the rat retina and 101dB sensitivity for 1.3mW optical power incident on the cornea. 2D and 3D
images were acquired in-vivo from healthy retinas and rat retinas with drug induced photore-
ceptor degeneration. All imaging procedures were carried out in accordance with an approved
ethics protocol established by the University of Waterloo Ethics Review Board. Only raw (un-
processed) rat retina OCT images were used for testing the performance of the novel algorithm.
The segmentation approach under evaluation was implemented in MATLAB and tested on an
Intel Pentium 4 2.4 GHz machine with 1 GB of RAM. The total execution time of the proposed
algorithm is approximately 5 seconds per image.

3. Results and Discussion

The novel segmentation algorithm was tested on a large set of OCT images acquired from
healthy and diseased rat retinas. Fig. 3 shows a representative, unprocessed image of the
rat retina [Fig. 3(a)] and a version of the same image segmented with the novel algorithm
[Fig. 3(b)]. The original image shows the layered structure of the rat retina with individual lay-
ers clearly visible. This representative image was selected specifically to contain a large blood
vessel on the surface of the retina (red arrow), so that the performance of the segmentation
algorithm can be explored in the area directly below the blood vessel where image contrast is
severely reduced due to haemoglobin absorption of light. The image was also selected to con-
tain irregular features of high reflectivity and image contrast near the retinal layer boundaries,
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Fig. 3. OCT cross-sectional tomograms (1000 x 250 pixels) of a healthy rat retina acquired
in-vivo. Fig. 3(a) shows the raw (unprocessed) image, with a large blood vessel locate on
the retinal surface (red arrow) and cross-sections of tiny capillaries imbedded in the inner
and outer plexiform layers of the retina visible as black circular features (yellow arrows).
Fig. 3(c) and Fig. 3(d) show 4x magnification of the region marked with the green box
in Fig. 3(b), Fig. 3(e), and Fig. 3(f) show 4x magnification of the region marked with the
yellow box in Fig. 3(b), containing cross-sections of retinal capillaries.
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Fig. 4. OCT cross-sectional tomograms (1000 x 250 pixels) of a diseased rat retina acquired
in-vivo. Fig. 4(a) shows the original, unprocessed image, while the segmented image is
shown in Fig. 4(b). Red arrow points at clusters of PR and RPE debris.

such as the small capillaries imbedded in the retinal inner plexiform (IPL) and outer plexiform
layer (OPL) to test the performance of the layer segmentation algorithm with such irregulari-
ties present. Cross-sections of the capillaries appear as black circular features marked with the
yellow arrows in the image on Fig. 3(a). The segmented image in Fig. 3(b) shows that the novel
algorithm can correctly identify and segment all intra-retinal layers regardless of the variation
of image contrast and the presence of irregular features in the OCT tomogram. A closer look
at the region marked with the green box in Fig. 3(b) and magnified by 4x in Fig. 3(c) (origi-
nal image) and Fig. 3(d) (segmented image) demonstrates that the segmentation code correctly
identifies the boundaries of very thin retinal layers, such as the OPL and the external limiting
membrane (ELM) even in region with severely reduced image SNR and contrast.

An expanded and 4x magnified copy of the region in Fig. 3(b) marked with the yellow box
is shown in Fig. 3(e) (original image) and Fig. 3(f) (segmented image). Close comparison of
the two magnified images shows that the new segmentation algorithm cannot separate highly
reflective image features positioned directly at the interface between two retinal layers from the
layer boundary. On such occasions the algorithm closely fits the outlines of the highly reflective
feature and includes it in the boundaries of the retinal layer with higher optical reflectivity.

Layer segmentation of thick retinal layers, such as the IPL and the outer nuclear layer (ONL)
in OCT tomograms is fairly straightforward when the images are acquired in healthy retinas that
are characterized with well defined, parallel layers. However, diseased retinas contain a variety
of morphological features such as macular holes, detachments, drusen, etc. that vary in size,
shape and image contrast and interrupt the regular layered structure of the retina. To test the
capability of the proposed algorithm to properly segment retinal layers in diseased retinas, we
have tested the code on OCT images acquired from rat retinas with drug-induced photoreceptor
degeneration. A representative raw image of the diseased rat retina is shown in Fig. 4(a). The
photoreceptor (PR) degeneration is characterized with complete disintegration of the ELM, the
inner and outer segments (IS/OS) of the PR, with local damage of the RPE, clustering of the
PR and RPE debris and global damage to the ONL and OPL. Also the overall image contrast is
reduced as compared to the retinal image displayed in Fig. 4(a). Even under such sub-optimal
conditions, the novel segmentation algorithm is capable of identifying correctly the boundaries
of the NFL and the IPL, as well as the position of the RPE layer. It also accurately outlines the
debris clusters.
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4. Conclusion

In this paper, a novel algorithm for segmenting individual retinal layers in retinal OCT imagery
is proposed. The proposed algorithm was demonstrated to achieve accurate intra-retinal seg-
mentation on retinal OCT imagery under low image contrast and in the presence of irregularly
shaped structural features. The proposed method shows great potential for quantitative analysis
of retinal layer thickness.
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