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ABSTRACT 
 
Next-generation 3D video games make use of normal maps 
to improve the realism and the visual detail of scenes and 
models.  The use of normal maps typically leads to increases 
in data storage and bus bandwidth requirements.  To cope 
with the increased demands of normal maps, compression 
techniques can be used.  Unfortunately, most texture 
compression techniques are poorly suited for normal map 
compression.  The application of such techniques on normal 
maps often leads to a degradation of visual quality.  This 
paper presents an adaptive approach to the task of 
compressing normal maps used by next-generation 3D 
video games.  The proposed method attempts to retain 
visual detail while reducing storage requirements.  
Experimental results demonstrate overall compression 
performance and visual quality that is superior to the 
performance of existing techniques.  The proposed method 
can be used to deliver improved photo-realism in 3D video 
games. 
 
Keywords: normal maps, adaptive compression, 3D 
video games 
 

1. INTRODUCTION 
 
One of the hottest graphics techniques being adopted 
by next-generation 3D video games is the application 
of normal maps.  This technique can be used to 
significantly improve the visual quality of a graphical 
object by making its surface appear much more 
detailed than a flat surface.  Figure 1 illustrates the 
application of a normal map on a sphere. When a 
normal map is applied to the sphere, the surface of the 
object appears to have significantly more geometric 
detail than the original object, despite the fact that the 
underlying model is identical.  Furthermore, the use of 
normal maps is often a more efficient approach for 
improving the detail of a model than increasing the 
number of polygons used.  This makes the technique 

suitable for real-time use in 3D video games.  
Furthermore, normal maps are used in state-of-the-art 
3D techniques such as parallax occlusion mapping [1] 
and steep parallax mapping [2], which can be used in 
future video games to bring real-time 3D game 
graphics to the next level. 

 
One of the major drawbacks to using normal maps is 

that it significantly increases memory and bandwidth 
requirements.  This is particularly problematic in the 
case where a normal map is generated from a high-
polygon model to cover a low-polygon model in its 
entirety.  Therefore, a way to compress normal maps is 
highly desired.  While different techniques have been 
proposed for compressing images to reduce bandwidth 
and storage requirements, most are not well-suited for 
handling normal maps in a real-time 3D video game.  
For example, transform-based techniques such as 
JPEG [3] and JPEG2000 [4] do not permit random 
access to individual texels in a texture map.  
Furthermore, these techniques are relatively complex 
to implement and computationally expensive.   

 
A number of different texture compression 

techniques have been used in 3D video games.  DXTC 

 
Figure 1: Left: Sphere with texture mapping 

Right: Sphere with texture mapping and normal map bump-
mapping 



(DirectX Texture Compression) is a family of texture 
compression formats based on the Color Cell 
Compression (CCC) method [5].  In particular, the 
DXT-1 format can be used to compress a RGBA 
texture at a ratio of 6:1 and the DXT-5 format can be 
used to compress a RGBA texture at a ratio of 4:1.  
The main advantage of DXTC is that it is part of the 
Direct3D standard so it is well supported by modern 
3D graphics devices.  While DXTC is effective at 
compressing color textures, it performs poorly on 
normal maps since important details are often lost.  
The compression artifacts are further amplified when 
normal maps are used in conjunction with shaders that 
include specular reflections [6]. 

 
Recently, ATI Technologies made an attempt to 

address this issue by introducing the 3Dc compression 
format [7].  Based on BTC (Block Truncation Coding) 
[8], the 3Dc compression format is able to achieve 
better visual detail than DXTC when compressing 
normal maps.  However, it is only able to achieve a 
compression ratio of 4:1.  The reason that a higher 
compression ratio is not achieved is that the same 
amount of data is used to represent smooth regions and 
detailed regions in a normal map.  In reality, smooth 
regions can be stored in less space than detailed 
regions without a noticeable loss in visual detail.   

 
The main contribution of this paper is an efficient 

adaptive compression algorithm for compressing 
normal maps in 3D video games.  This method reduces 
the amount of information needed to represent normal 
maps while achieving a high level of visual detail.  
This allows for future 3D video games to deliver a 
higher level of visual detail and photo-realism.  In this 
paper, the underlying theory behind adaptive normal 
map compression is presented and explained in Section 
2.  An implementation of the proposed algorithm is 
presented in Section 3.  The testing methods and test 
data are outlined in Section 4.  Finally, experimental 
results comparing the proposed algorithm with DXTC 
and 3Dc are discussed in Section 5, and conclusions 
are drawn in Section 6. 

 
2. THEORY 

 
Before outlining an implementation of the proposed 
normal map compression algorithm, it is important to 
discuss the theory behind the key components of the 
algorithm.  First, an overview of normal maps is 
presented.  Second, the underlying theory behind the 

BTC compression scheme is explained.  Finally, the 
concept of adaptive normal map compression is 
introduced and described to justify its use in reducing 
storage requirements while retaining visual detail. 
 
2.1. Normal Maps 
 
In normal maps, the normal vector of a surface at a 
particular location is stored in the form of a raster 
image.  A normal vector can be represented by its x, y, 
and z components.  Thus, surface normal information 
is typically stored as three separate component 
channels in an image.  Using this information, the 
direction of light reflections can be computed at a 
particular point for all light sources.  This allows the 
lighting of a surface to be performed in a much more 
detailed manner.  This gives the illusion that the 
surface has greater geometric detail than it really does.  
One popular use of normal maps is to capture surface 
normal information from a high-polygon model and 
then apply the normal map to a low-polygon model.  
This gives the low-polygon model the visual detail of a 
higher-polygon model without the need for as many 
polygons.  This is illustrated in Figure 2, where a color 
map and a normal map are applied to a plane.  Due to 
the way the lighting is calculated based on the normal 
information, the surface appears to contain the 
geometric details of a high-polygon surface.  However, 
the underlying plane has no real geometry. 

 

 
Figure 2: A color map and a normal map are applied to a plane 



 One important characteristic of normal maps is that 
normal vectors should be unit length.  Furthermore, the 
z-component of the normal vector can be assumed to 
be positive, as it should be pointing out of the surface.  
Therefore, the z-component can be calculated using the 
x and y components of the normal vector using the 
following formula: 
 

( )2 21z x y= − +                             (1) 

 
The z-component can be calculated using pixel shaders 
with very little computational cost.  By calculating the 
z-component of the normal vector as opposed to 
storing it, the amount of data required to store a 
normal map is reduced by one third.  The data savings 
can then be used to represent the x and y components 
with greater precision. 
 
 
2.2. Block Truncation Coding (BTC) 
 
Block Truncation Coding (BTC) is a lossy image 
compression method that can be seen as the basis of 
many popular texture compression techniques.  In 
BTC, a grayscale image is divided into a set of smaller 
blocks.  Based on local statistics within a block, two 
grayscale values are chosen to represent the image, 
VLOW and VHIGH.  One way of choosing the two 
grayscale values is to find the mean grayscale value of 
the image.  The pixels are then grouped together 
depending on whether it is greater than the mean 
value.  The mean grayscale value is then found for the 
pixel group whose values are greater than the mean of 
the image.  This value is then used for VHIGH.  
Similarly, the mean grayscale value is found for the 
pixel group whose values are less than the mean of the 
image.  This value is then assigned to VLOW.  A bit-
mask is created by classifying the pixels within the 
block relative to the chosen grayscale values.  For 
example, if a pixel’s grayscale value is closer to VLOW 
than VHIGH, then the pixel is assigned a value of 0 in 
the block mask.  Otherwise the pixel is assigned a 
value of 1 in the block mask.  The block mask and the 
two grayscale values can then be stored and used to 
reconstruct an approximation of the image block.   
 
 To demonstrate the effectiveness of BTC for 
compressing image data, consider the following 
example using a 256×256 texture map.  Assume that 
each pixel in the original texture map is represented by 

a 32-bit value.  BTC divides the image into blocks of 
size 4×4 and represents pixel intensities using 8-bit 
grayscale values.  Therefore, for each block, two 8-bit 
grayscale values and one 16-bit block mask are stored.  
This results in a total storage requirement of 32-bits 
for each block.  Since the original image uses 16×32 = 
512 bits of data for each block, BTC compression is 
able to achieve a compression ratio of 16:1.   
 
 There are a number of advantages to using BTC for 
texture compression.  First, it is relatively simple to 
implement and has a low computational cost.  Second, 
it allows for random access to individual texels 
without the need to decompress the entire texture.  
This is important for real-time 3D applications such as 
video games.  Given all of these benefits, the proposed 
adaptive normal map compression algorithm is based 
on the BTC compression framework. 
 
2.3. Adaptive Normal Map Compression 
 
To compress a normal map using BTC, each 
component channel that needs to be stored (x and y) is 
compressed separately.  One problem with using the 
basic BTC algorithm on normal maps is the fact that 
not enough bits are used to provide an accurate 
representation of the normal vectors.  This results in 
disturbing artifacts such as image banding and 
blocking artifacts.  One simple method of 
reducing the visual detail degradation caused by 
compressing normal maps is to increase the number of 
bits used to store the normal vector information.  This 
is the approach taken by ATI Technologies for the 3Dc 
texture compression algorithm.  While the resultant 
visual quality is much improved over DXTC and 
standard BTC, the compression ratio is reduced to 4:1.  
  
 A more memory-efficient approach to improving 
visual detail quality is to allocate more bits only to 
regions on the normal map that benefit from the 
additional bits.  Furthermore, the number of bits 
allocated is reduced for regions that can be represented 
with fewer bits without noticeable visual degradation.  
Using this approach, the amount of data used to store a 
normal map is the amount necessary to represent the 
normal map with a high level of visual detail.  This is 
the approach taken by the proposed algorithm. 
 
 To perform adaptive normal map compression, it is 
necessary to select an evaluation metric for 
determining the level of compression a block in the 



normal map can undergo without noticeable visual 
artifacts.  Therefore, it is important to understand some 
of the common characteristics of normal maps.  
Normal maps are used to represent the geometry of a 
surface.  Detail degradation is most noticeable to the 
human vision system in regions that exhibit a large 
change in geometry such as edges.  Therefore, a good 
way to quantify such changes is to measure the 
gradient magnitude on the normal map, as given by 
 

( )2 2
x yG = ∇ +∇                            (2) 

 
where x∇ is the partial derivative with respect to the x 
direction and y∇  is the partial derivative with respect 
to the y direction.  A high gradient magnitude indicates 
large changes in geometry on the surface.  Therefore, 
the following measure can be used to classify a block 
based on gradient magnitude: 
 

            
max

( , )

( )
x y

G x y
R

N G
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                          (3) 

 
where N is the number of pixels in a block and Gmax is 
the maximum possible value of G.  If a block has a 
high value of R, then it is necessary to allocate more 
bits to the block to preserve visual detail.  If a block 
has a low value of R, then the number of bits used can 
be reduced without noticeable loss in visual detail.  To 
reduce the complexity of the proposed algorithm, the 
blocks are classified into a small number of classes 
using fixed thresholds.  For example, if the value of R 
for a block is less than threshold tA, then the block 
belongs to class A.  Each class requires a fixed number 
of bits for each block.  Furthermore, the class 
information about a block must also be stored.  It is 
important to note that each component channel must 
be evaluated separately since the characteristics of 
each component may be different within the same 
block. 
 
 Since blocks of different classes require different 
amount of storage to preserve visual detail, it is 
necessary to extend the standard BTC algorithm to 
allow for different levels of compression.  One 
effective way is to increase the number of values used 
to represent a particular block depending on the level 
of compression required.  For example, blocks with a 

low value of R can be well represented with 2 values 
while blocks with a high value of R would require 8 
values to preserve visual detail.  To avoid the issue of 
having to store additional values, the two values (VLOW 
and VHIGH) can be used to calculate the remaining 
intermediate values for the block.  The values used to 
represent components within a block are calculated as 
follows: 
 

( )HIGH LOW
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−
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       (4) 

 
where N is the number of values used to represent a 
block.  A block mask is constructed to indicate the 
value of a particular texel within the block.  The block 
mask and the two values (VLOW and VHIGH) are stored 
and used to reconstruct the block in the decompression 
process. 
 
 There are a number of advantages to this approach to 
improving the visual quality of compressed normal 
maps.  First, since the entire block classification 
process is performed during the production stage of 
game development, the computational cost of the 
proposed algorithm for texture decompression during a 
game is low.  Second, the proposed algorithm retains 
the ability to allow efficient random access to 
individual texels without full normal map 
decompression, despite its adaptive nature. 
 
2.4. Implementation 
 
Based on the theory presented, a practical 
implementation of adaptive normal map compression 
can be defined.  Assume that the original normal map 
is stored as a 3-channel image (one channel for each 
component).  Each texel in the image is represented by 
32 bits of data.  For the proposed implementation, the 
normal map is broken up into 4×4 blocks.  Therefore, 
there are 16 texels within each block.  Since the z-
component can be calculated using the x and y 
components, only the x and y components are stored.  
Each component channel is compressed separately.  
For each channel, the blocks are classified into one of 
3 classes (LOW, MED, and HIGH) in the following 
manner: 
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where tLOW and tHIGH are thresholds used for block 
classification purposes.  For testing purposes, tLOW and 
tHIGH were set to 0.07 and 0.18 respectively based on 
the results of subjective quality tests.  Since 3 classes 
were used, 2 bits were needed per block to indicate the 
assigned class.  The class information can be used to 
quickly calculate the offset to a particular texel. 
 
 For blocks classified as LOW, two 8-bit values and 
one 16-bit block mask are stored to represent each 
block for the component channel.  Including the 2 
extra bits used to indicate the assigned class, a total of 
34 bits are required.  For blocks classified as MED, 
two 8-bit stored values, two 8-bit calculated values, 
and one 32-bit block mask are used to represent each 
block for the component channel.  Including the 2 
extra bits used to indicate the assigned class, a total of 
50 bits are required.  Finally, for blocks classified as 
HIGH, two 8-bit stored values, six 8-bit calculated 
values, and one 48-bit block mask are used to 
represent each block for the component channel.  
Including the 2 extra bits used to indicate the assigned 
class, a total of 66 bits are required.   
 

3. TESTING METHODS 
 
To demonstrate the effectiveness of the proposed 
algorithm in real-world situations, the proposed 
implementation was tested using four normal maps of 
size 256×256.  These test maps are representative of 
the types of normal maps used in a 3D video game.  A 
description of each normal map is described below. 
 
• DOOR: A normal map of a metallic door texture [9].   
• BRICK: A normal map for a brick wall texture [10].   
• COBBLES: A normal map for a cobblestone texture 

[10].     
• WOOD: A normal map for a wooden floor texture [10].   
 
For testing purposes, the same classification thresholds 
are used for all test cases.  In a real-world scenario, the 
artist can adjust the thresholds to provide improved 
compression performance and/or improved visual 
quality for a specific type of normal map.  The normal 
maps were compressed using baseline DXTC and 3Dc 

for purposes of comparison. 
 

4. EXPERIMENTAL RESULTS 
 
The compression performance results are shown in 
Table I.  It can be observed that the proposed method 
showed noticeably better compression performance 
over the 3Dc method in all test cases.  The overall 
compression ratio is close to that achieved using 
DXT1 RGBA.  The test cases are shown using the 
three compression methods in Fig. 3 through Fig. 6.  
The visual quality of the proposed method is 
noticeably superior to the DXTC method.  The fine 
details are retained much better using the proposed 
method.  Furthermore, the visual quality of the 
proposed method is comparable to that achieved using 
the 3Dc method, while still achieving higher 
compression performance. 

 
5. CONCLUSIONS AND FUTURE WORK 

 
In this paper, we have introduced an efficient and 
adaptive method for compressing normal maps for use 
in real-time 3D video games.  Experimental results 
show good compression performance to 3Dc and 
superior visual quality to DXTC.  It is believed that 
this method can be successfully implemented into 3D 
video games to improve visual detail of game objects 
and environments.  Future work includes developing a 
hardware implementation of the proposed method. 
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TABLE I 
COMPRESSION PERFORMANCE 

Map Compression Ratio Improvement over 3Dc  

DOOR 5.57:1 39.25% 
BRICK 6.30:1 57.50% 
COBBLES 4.96:1 24.00% 
WOOD 6.28:1 57.00% 
Overall 5.78:1 44.50% 
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Figure 3: DOOR test case 

Top-left: Uncompressed; Top-right: DXTC; Bottom-left: Proposed Method; Bottom-right: 3Dc 

Figure 4: BRICK test case 
Top-left: Uncompressed; Top-right: DXTC; Bottom-left: Proposed Method; Bottom-right: 3Dc 

 



 

Figure 6: WOOD test case 
Top-left: Uncompressed; Top-right: DXTC; Bottom-left: Proposed Method; Bottom-right: 3Dc

Figure 5: COBBLES test case 
Top-left: Uncompressed; Top-right: DXTC; Bottom-left: Proposed Method; Bottom-right: 3Dc


