
Adaptive Normal Map Compression for 3D Video Games

Alexander Wong William Bishop
a28wong@engmail.uwaterloo.ca wdbishop@uwaterloo.ca

Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1.

ABSTRACT

Next-generation 3D video games make use of normal maps
to improve the realism and the visual detail of scenes and
models. The use of normal maps typically leads to increases
in data storage and bus bandwidth requirements. To cope
with the increased demands of normal maps, compression
techniques can be used. Unfortunately, most texture
compression techniques are poorly suited for normal map
compression. The application of such techniques on normal
maps often leads to a degradation of visual quality. This
paper presents an adaptive approach to the task of
compressing normal maps used by next-generation 3D
video games. The proposed method attempts to retain
visual detail while reducing storage requirements.
Experimental results demonstrate overall compression
performance and visual quality that is superior to the
performance of existing techniques. The proposed method
can be used to deliver improved photo-realism in 3D video
games.

Keywords: normal maps, adaptive compression, 3D
video games

1. INTRODUCTION

One of the hottest graphics techniques being adopted
by next-generation 3D video games is the application
of normal maps. This technique can be used to
significantly improve the visual quality of a graphical
object by making its surface appear much more
detailed than a flat surface. Figure 1 illustrates the
application of a normal map on a sphere. When a
normal map is applied to the sphere, the surface of the
object appears to have significantly more geometric
detail than the original object, despite the fact that the
underlying model is identical. Furthermore, the use of
normal maps is often a more efficient approach for
improving the detail of a model than increasing the
number of polygons used. This makes the technique

suitable for real-time use in 3D video games.
Furthermore, normal maps are used in state-of-the-art
3D techniques such as parallax occlusion mapping [1]
and steep parallax mapping [2], which can be used in
future video games to bring real-time 3D game
graphics to the next level.

One of the major drawbacks to using normal maps is

that it significantly increases memory and bandwidth
requirements. This is particularly problematic in the
case where a normal map is generated from a high-
polygon model to cover a low-polygon model in its
entirety. Therefore, a way to compress normal maps is
highly desired. While different techniques have been
proposed for compressing images to reduce bandwidth
and storage requirements, most are not well-suited for
handling normal maps in a real-time 3D video game.
For example, transform-based techniques such as
JPEG [3] and JPEG2000 [4] do not permit random
access to individual texels in a texture map.
Furthermore, these techniques are relatively complex
to implement and computationally expensive.

A number of different texture compression

techniques have been used in 3D video games. DXTC

Figure 1: Left: Sphere with texture mapping

Right: Sphere with texture mapping and normal map bump-
mapping

(DirectX Texture Compression) is a family of texture
compression formats based on the Color Cell
Compression (CCC) method [5]. In particular, the
DXT-1 format can be used to compress a RGBA
texture at a ratio of 6:1 and the DXT-5 format can be
used to compress a RGBA texture at a ratio of 4:1.
The main advantage of DXTC is that it is part of the
Direct3D standard so it is well supported by modern
3D graphics devices. While DXTC is effective at
compressing color textures, it performs poorly on
normal maps since important details are often lost.
The compression artifacts are further amplified when
normal maps are used in conjunction with shaders that
include specular reflections [6].

Recently, ATI Technologies made an attempt to

address this issue by introducing the 3Dc compression
format [7]. Based on BTC (Block Truncation Coding)
[8], the 3Dc compression format is able to achieve
better visual detail than DXTC when compressing
normal maps. However, it is only able to achieve a
compression ratio of 4:1. The reason that a higher
compression ratio is not achieved is that the same
amount of data is used to represent smooth regions and
detailed regions in a normal map. In reality, smooth
regions can be stored in less space than detailed
regions without a noticeable loss in visual detail.

The main contribution of this paper is an efficient

adaptive compression algorithm for compressing
normal maps in 3D video games. This method reduces
the amount of information needed to represent normal
maps while achieving a high level of visual detail.
This allows for future 3D video games to deliver a
higher level of visual detail and photo-realism. In this
paper, the underlying theory behind adaptive normal
map compression is presented and explained in Section
2. An implementation of the proposed algorithm is
presented in Section 3. The testing methods and test
data are outlined in Section 4. Finally, experimental
results comparing the proposed algorithm with DXTC
and 3Dc are discussed in Section 5, and conclusions
are drawn in Section 6.

2. THEORY

Before outlining an implementation of the proposed
normal map compression algorithm, it is important to
discuss the theory behind the key components of the
algorithm. First, an overview of normal maps is
presented. Second, the underlying theory behind the

BTC compression scheme is explained. Finally, the
concept of adaptive normal map compression is
introduced and described to justify its use in reducing
storage requirements while retaining visual detail.

2.1. Normal Maps

In normal maps, the normal vector of a surface at a
particular location is stored in the form of a raster
image. A normal vector can be represented by its x, y,
and z components. Thus, surface normal information
is typically stored as three separate component
channels in an image. Using this information, the
direction of light reflections can be computed at a
particular point for all light sources. This allows the
lighting of a surface to be performed in a much more
detailed manner. This gives the illusion that the
surface has greater geometric detail than it really does.
One popular use of normal maps is to capture surface
normal information from a high-polygon model and
then apply the normal map to a low-polygon model.
This gives the low-polygon model the visual detail of a
higher-polygon model without the need for as many
polygons. This is illustrated in Figure 2, where a color
map and a normal map are applied to a plane. Due to
the way the lighting is calculated based on the normal
information, the surface appears to contain the
geometric details of a high-polygon surface. However,
the underlying plane has no real geometry.

Figure 2: A color map and a normal map are applied to a plane

 One important characteristic of normal maps is that
normal vectors should be unit length. Furthermore, the
z-component of the normal vector can be assumed to
be positive, as it should be pointing out of the surface.
Therefore, the z-component can be calculated using the
x and y components of the normal vector using the
following formula:

()2 21z x y= − + (1)

The z-component can be calculated using pixel shaders
with very little computational cost. By calculating the
z-component of the normal vector as opposed to
storing it, the amount of data required to store a
normal map is reduced by one third. The data savings
can then be used to represent the x and y components
with greater precision.

2.2. Block Truncation Coding (BTC)

Block Truncation Coding (BTC) is a lossy image
compression method that can be seen as the basis of
many popular texture compression techniques. In
BTC, a grayscale image is divided into a set of smaller
blocks. Based on local statistics within a block, two
grayscale values are chosen to represent the image,
VLOW and VHIGH. One way of choosing the two
grayscale values is to find the mean grayscale value of
the image. The pixels are then grouped together
depending on whether it is greater than the mean
value. The mean grayscale value is then found for the
pixel group whose values are greater than the mean of
the image. This value is then used for VHIGH.
Similarly, the mean grayscale value is found for the
pixel group whose values are less than the mean of the
image. This value is then assigned to VLOW. A bit-
mask is created by classifying the pixels within the
block relative to the chosen grayscale values. For
example, if a pixel’s grayscale value is closer to VLOW
than VHIGH, then the pixel is assigned a value of 0 in
the block mask. Otherwise the pixel is assigned a
value of 1 in the block mask. The block mask and the
two grayscale values can then be stored and used to
reconstruct an approximation of the image block.

 To demonstrate the effectiveness of BTC for
compressing image data, consider the following
example using a 256×256 texture map. Assume that
each pixel in the original texture map is represented by

a 32-bit value. BTC divides the image into blocks of
size 4×4 and represents pixel intensities using 8-bit
grayscale values. Therefore, for each block, two 8-bit
grayscale values and one 16-bit block mask are stored.
This results in a total storage requirement of 32-bits
for each block. Since the original image uses 16×32 =
512 bits of data for each block, BTC compression is
able to achieve a compression ratio of 16:1.

 There are a number of advantages to using BTC for
texture compression. First, it is relatively simple to
implement and has a low computational cost. Second,
it allows for random access to individual texels
without the need to decompress the entire texture.
This is important for real-time 3D applications such as
video games. Given all of these benefits, the proposed
adaptive normal map compression algorithm is based
on the BTC compression framework.

2.3. Adaptive Normal Map Compression

To compress a normal map using BTC, each
component channel that needs to be stored (x and y) is
compressed separately. One problem with using the
basic BTC algorithm on normal maps is the fact that
not enough bits are used to provide an accurate
representation of the normal vectors. This results in
disturbing artifacts such as image banding and
blocking artifacts. One simple method of
reducing the visual detail degradation caused by
compressing normal maps is to increase the number of
bits used to store the normal vector information. This
is the approach taken by ATI Technologies for the 3Dc
texture compression algorithm. While the resultant
visual quality is much improved over DXTC and
standard BTC, the compression ratio is reduced to 4:1.

 A more memory-efficient approach to improving
visual detail quality is to allocate more bits only to
regions on the normal map that benefit from the
additional bits. Furthermore, the number of bits
allocated is reduced for regions that can be represented
with fewer bits without noticeable visual degradation.
Using this approach, the amount of data used to store a
normal map is the amount necessary to represent the
normal map with a high level of visual detail. This is
the approach taken by the proposed algorithm.

 To perform adaptive normal map compression, it is
necessary to select an evaluation metric for
determining the level of compression a block in the

normal map can undergo without noticeable visual
artifacts. Therefore, it is important to understand some
of the common characteristics of normal maps.
Normal maps are used to represent the geometry of a
surface. Detail degradation is most noticeable to the
human vision system in regions that exhibit a large
change in geometry such as edges. Therefore, a good
way to quantify such changes is to measure the
gradient magnitude on the normal map, as given by

()2 2
x yG = ∇ +∇ (2)

where x∇ is the partial derivative with respect to the x
direction and y∇ is the partial derivative with respect
to the y direction. A high gradient magnitude indicates
large changes in geometry on the surface. Therefore,
the following measure can be used to classify a block
based on gradient magnitude:

max

(,)

()
x y

G x y
R

N G
=
∑∑

 (3)

where N is the number of pixels in a block and Gmax is
the maximum possible value of G. If a block has a
high value of R, then it is necessary to allocate more
bits to the block to preserve visual detail. If a block
has a low value of R, then the number of bits used can
be reduced without noticeable loss in visual detail. To
reduce the complexity of the proposed algorithm, the
blocks are classified into a small number of classes
using fixed thresholds. For example, if the value of R
for a block is less than threshold tA, then the block
belongs to class A. Each class requires a fixed number
of bits for each block. Furthermore, the class
information about a block must also be stored. It is
important to note that each component channel must
be evaluated separately since the characteristics of
each component may be different within the same
block.

 Since blocks of different classes require different
amount of storage to preserve visual detail, it is
necessary to extend the standard BTC algorithm to
allow for different levels of compression. One
effective way is to increase the number of values used
to represent a particular block depending on the level
of compression required. For example, blocks with a

low value of R can be well represented with 2 values
while blocks with a high value of R would require 8
values to preserve visual detail. To avoid the issue of
having to store additional values, the two values (VLOW
and VHIGH) can be used to calculate the remaining
intermediate values for the block. The values used to
represent components within a block are calculated as
follows:

()HIGH LOW
LOW , 0,1,.., 1

1i

V V
Value V i i N

N
−

= + = −
−

 (4)

where N is the number of values used to represent a
block. A block mask is constructed to indicate the
value of a particular texel within the block. The block
mask and the two values (VLOW and VHIGH) are stored
and used to reconstruct the block in the decompression
process.

 There are a number of advantages to this approach to
improving the visual quality of compressed normal
maps. First, since the entire block classification
process is performed during the production stage of
game development, the computational cost of the
proposed algorithm for texture decompression during a
game is low. Second, the proposed algorithm retains
the ability to allow efficient random access to
individual texels without full normal map
decompression, despite its adaptive nature.

2.4. Implementation

Based on the theory presented, a practical
implementation of adaptive normal map compression
can be defined. Assume that the original normal map
is stored as a 3-channel image (one channel for each
component). Each texel in the image is represented by
32 bits of data. For the proposed implementation, the
normal map is broken up into 4×4 blocks. Therefore,
there are 16 texels within each block. Since the z-
component can be calculated using the x and y
components, only the x and y components are stored.
Each component channel is compressed separately.
For each channel, the blocks are classified into one of
3 classes (LOW, MED, and HIGH) in the following
manner:

LOW

LOW HIGH

HIGH

LOW if
() MED if

HIGH if
i

R t
Class Block t R t

R t

<⎧ ⎫
⎪ ⎪= ≤ ≤⎨ ⎬
⎪ ⎪>⎩ ⎭

 (5)

where tLOW and tHIGH are thresholds used for block
classification purposes. For testing purposes, tLOW and
tHIGH were set to 0.07 and 0.18 respectively based on
the results of subjective quality tests. Since 3 classes
were used, 2 bits were needed per block to indicate the
assigned class. The class information can be used to
quickly calculate the offset to a particular texel.

 For blocks classified as LOW, two 8-bit values and
one 16-bit block mask are stored to represent each
block for the component channel. Including the 2
extra bits used to indicate the assigned class, a total of
34 bits are required. For blocks classified as MED,
two 8-bit stored values, two 8-bit calculated values,
and one 32-bit block mask are used to represent each
block for the component channel. Including the 2
extra bits used to indicate the assigned class, a total of
50 bits are required. Finally, for blocks classified as
HIGH, two 8-bit stored values, six 8-bit calculated
values, and one 48-bit block mask are used to
represent each block for the component channel.
Including the 2 extra bits used to indicate the assigned
class, a total of 66 bits are required.

3. TESTING METHODS

To demonstrate the effectiveness of the proposed
algorithm in real-world situations, the proposed
implementation was tested using four normal maps of
size 256×256. These test maps are representative of
the types of normal maps used in a 3D video game. A
description of each normal map is described below.

• DOOR: A normal map of a metallic door texture [9].
• BRICK: A normal map for a brick wall texture [10].
• COBBLES: A normal map for a cobblestone texture

[10].
• WOOD: A normal map for a wooden floor texture [10].

For testing purposes, the same classification thresholds
are used for all test cases. In a real-world scenario, the
artist can adjust the thresholds to provide improved
compression performance and/or improved visual
quality for a specific type of normal map. The normal
maps were compressed using baseline DXTC and 3Dc

for purposes of comparison.

4. EXPERIMENTAL RESULTS

The compression performance results are shown in
Table I. It can be observed that the proposed method
showed noticeably better compression performance
over the 3Dc method in all test cases. The overall
compression ratio is close to that achieved using
DXT1 RGBA. The test cases are shown using the
three compression methods in Fig. 3 through Fig. 6.
The visual quality of the proposed method is
noticeably superior to the DXTC method. The fine
details are retained much better using the proposed
method. Furthermore, the visual quality of the
proposed method is comparable to that achieved using
the 3Dc method, while still achieving higher
compression performance.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced an efficient and
adaptive method for compressing normal maps for use
in real-time 3D video games. Experimental results
show good compression performance to 3Dc and
superior visual quality to DXTC. It is believed that
this method can be successfully implemented into 3D
video games to improve visual detail of game objects
and environments. Future work includes developing a
hardware implementation of the proposed method.

ACKNOWLEDGEMENTS

 The authors would like to thank Epson Canada and
the Natural Sciences and Engineering Research
Council of Canada.

TABLE I
COMPRESSION PERFORMANCE

Map Compression Ratio Improvement over 3Dc

DOOR 5.57:1 39.25%
BRICK 6.30:1 57.50%
COBBLES 4.96:1 24.00%
WOOD 6.28:1 57.00%
Overall 5.78:1 44.50%

REFERENCES
[1] N. Tatarchuk, "Dynamic Parallax Occlusion
Mapping with Approximate Soft Shadows," in
Proceedings of the 2006 symposium on Interactive 3D
graphics and games, 2006, pp. 63-2006.
[2] Morgan McGuire and Max McGuire, "Steep
Parallax Mapping," presented at I3D 2005,
http://www.cs.brown.edu/research/graphics/games/Ste
epParallax/index.html.
[3] G. Wallace, “The JPEG Still Picture Compression
Standard,” Comm. ACM, 1991, Vol. 34, No. 4, pp. 30-
34.
[4] M. Boliek, C. Christopoulos, and E. Majani, “JPEG
2000 Part I Final Committee Draft Version 1.0,” 2000,
http://www.jpeg.org/public/fcd15444-1.pdf.
[5] G. Campbell, T. DeFanti, J. Frederiksen, S. Joyce,
and L. Leske, "Two bit/pixel full color encoding," in
SIGGRAPH, 1986, pp. 215-223.
[6] “Bump Map Compression,” Nvidia Corporation,
October 2004,
http://download.nvidia.com/developer/Papers/2004/Bu
mp_Map_Compression/Bump_Map_Compression.pdf.
[7] “3Dc White Paper”, ATI Technologies, April 2004,
http://www.ati.com/products/radeonx800/3DcWhitePa
per.pdf.
[8] E. Delp and O. Mitchell, "Image compression
using block truncation coding," in IEEE Trans.
Communications, 1979, vol. COM-27, pp. 1335-1342.
[9] “Bump Map Compression”, Nvidia Corporation,
http://developer.nvidia.com/object/bump_map_compre
ssion.html.
[10] Crystal Space 3D, http://www.crystalspace3d.org.

Figure 3: DOOR test case

Top-left: Uncompressed; Top-right: DXTC; Bottom-left: Proposed Method; Bottom-right: 3Dc

Figure 4: BRICK test case
Top-left: Uncompressed; Top-right: DXTC; Bottom-left: Proposed Method; Bottom-right: 3Dc

Figure 6: WOOD test case
Top-left: Uncompressed; Top-right: DXTC; Bottom-left: Proposed Method; Bottom-right: 3Dc

Figure 5: COBBLES test case
Top-left: Uncompressed; Top-right: DXTC; Bottom-left: Proposed Method; Bottom-right: 3Dc

