Segmentation
What is Segmentation?

- Underlying goal of image segmentation is to partition an image into multiple groups/regions

Source: The MathWorks
Why segment?

- Segmentation allows objects and regions to be analysed in a more meaningful manner.
- Some applications of segmentation:
 - Object tracking (e.g., people tracking for surveillance purposes)
 - Medical Image Analysis (e.g., tumor growth analysis)
 - Remote Sensing Analysis (e.g., determine the ratio of different types of sea-ice within a region)
 - Face recognition (e.g., partition face into individual parts for component recognition)
Some of the most common groups of segmentation algorithms are:
- Histogram based segmentation
- Clustering based segmentation
- Region growing segmentation
- Active contour based segmentation
- Watershed based segmentation
- Morphology based segmentation
Histogram based Segmentation

- One of the simplest and most efficient form of segmentation
- Steps:
 - Compute the histogram of the image
Steps:
- Analyse peaks of the histogram and determine an appropriate point of thresholding
Histogram based Segmentation

- Steps:
 - Determine an appropriate point of thresholding based on what we want (e.g., segment foreground and background)
Histogram based Segmentation

- Steps:
 - Set all pixels to a set of fixed values based on threshold
Otsu's Method

- **Goal:**
 - Find threshold that minimizes intra-class variance
- **What is intra-class variance?**

\[
\sigma^2_{\text{intra}}(T) = \sum_{i=0}^{T-1} p(i)\sigma^1_1(T) + \sum_{i=T}^{N-1} p(i)\sigma^2_2(T)
\]

- **Problem:** Expensive to compute!
Otsu's Method

- Solution: Minimizing intra-class variance equivalent to maximizing inter-class variance
- What is inter-class variance?

\[
\sigma^2_{\text{inter}}(T) = \sigma^2_{\text{total}}(T) - \sigma^2_{\text{inter}}(T)
\]

\[
\sigma^2_{\text{inter}}(T) = \sum_{i=0}^{T-1} p(i) [\mu_1(T) - \mu]^2 + \sum_{i=T}^{N-1} p(i) [\mu_2(T) - \mu]^2
\]
Otsu's Method

Since

\[\mu(T) = \sum_{i=0}^{T-1} p(i)\mu_1(T) + \sum_{i=T}^{N-1} p(i)\mu_2(T) \]

- The inter-variance can be expressed as

\[\sigma^2_{inter}(T) = \sum_{i=0}^{T-1} p(i) \sum_{i=T}^{N-1} p(i)[\mu_1(T) - \mu_2(T)]^2 \]
Otsu's Method

Steps:
- For each possible threshold T
 - 1. Determine the values within each of the clusters formed by T
 - 2. Find the mean of the clusters (u_1 and u_2)
 - 3. Compute the squared difference between the means
 - 4. Multiply result by the cumulative probability in cluster 1
 - 5. Multiply result by the cumulative probability in cluster 2
Otsu's Method

Steps:
- For each possible threshold T
 - 1. Determine the values within each of the clusters formed by T
 - 2. Find the mean of the clusters (u_1 and u_2)
 - 3. Compute the squared difference between the means
 - 4. Multiply result by the cumulative probability in cluster 1
 - 5. Multiply result by the cumulative probability in cluster 2
 Finite Mixture Models

- Suppose we know that there are m clusters/classes in the image
- Suppose that the probability distribution of each cluster/class can be modeled using a parametric model (e.g., Gaussian, Gamma, Cauchy, etc.)
- Idea: We can model the probability distribution of the image as a mixture of m different probability distributions, one for each cluster/class
Finite Mixture Models

• Formulation:

\[f_X(x) = \sum_{i=1}^{m} a_i f_{Y_i}(x) \]

• Goal: Determine this set of \(m \) distributions and determine which pixel values belong to each cluster/class based on which of these distributions give the highest probability
Finite Mixture Models

- Example

![Graph showing two clusters](image-url)
Finite Mixture Models

- **Steps:**
 - Learn the parameters of the distribution models for the m clusters
 - e.g., for Gaussian, learn the mean and standard deviation
 - For each possible pixel
 - 1. Determine the probability that its pixel intensity belongs to each of the m clusters based on the distribution models
 - 2. Assign the pixel's cluster label to the cluster that provides the highest probability
 - Therefore, thresholds between clusters coincide with at points of equal probabilities
Finite Mixture Models

- Example: Suppose we have two classes, modeled by two Gaussians ($u_1=3$, $\sigma_1=1$, $u_2=5$, $\sigma_2=1$)
- What is the threshold between these two classes?
 - Set up distribution equations for each class

 \[f_{Y_1}(x) = \exp\left[-\frac{(x - 3)^2}{2(1)^2}\right] \]

 \[f_{Y_2}(x) = \exp\left[-\frac{(x - 5)^2}{2(1)^2}\right] \]
Finite Mixture Models

- Since threshold is at point of equal probabilities:

\[f_{Y_1}(x) = f_{Y_2}(x) \]
\[\exp\left[-\frac{(x - 3)^2}{2(1)^2}\right] = \exp\left[-\frac{(x - 5)^2}{2(1)^2}\right] \]
\[-(x - 3)^2 = -(x - 5)^2 \]
\[x^2 - 6x + 9 = x^2 - 10x + 25 \]
\[4x = 16 \]
\[x = 4 \]
Histogram based Segmentation

• Advantages:
 – Efficient (usually requires only one pass for simple segmentation cases)

• Disadvantages:
 – Often difficult to determine proper peaks in the histogram
 – Difficult in situations where intensity is not sufficient to distinguish between two partitions (e.g., textured regions containing different mixes of intensities)
Clustering based Segmentation

- Create partitions by grouping pixels into clusters
- **Steps (for K-means clustering):**
 - Pick k pixels in the image to act as the initial centers of the k clusters
 - For each pixel, find the cluster that minimizes your distance metric
 - Distance metric can be the differences in:
 - Pixel intensity
 - Location
 - Variance
 - Weighted combination of these differences
Clustering based Segmentation

- **Steps:**
 - For each cluster, recalculate the cluster center based on the pixel locations within the cluster
 - Re-do all previous steps until convergence
- **Advantages:**
 - Good for segmentation where there are multiple distinct partitions
- **Disadvantages:**
 - Performs poorly when the regions have irregular shapes that mix into each other
Region Growing Segmentation

- Create partitions by continuously growing smaller regions until all pixels are accounted for.
- Steps:
 - Pick initial seeds that mark the individual regions who wish to segment
Region Growing Segmentation

- **Steps:**
 - For all neighboring pixels to the seed, compare the similarity between the seed and the pixel.
 - The pixel with the highest similarity is added to the seed to form a small region.
Region Growing Segmentation

• Steps:
 – For all neighboring pixels to the new regions, compare the similarity between the seed and the pixel
 – The pixel with the highest similarity is added to the small region to form a bigger region
 – Continue until all pixels in the image belong to a region
Region Growing Segmentation

- Advantages:
 - Good for segmentation with irregular shapes
- Disadvantages:
 - Slow
Active Contour Segmentation

- Create partitions by forming rough boundaries around regions/objects of interest and refining the boundaries until it matches the actual boundaries of the objects
- Steps:
 - Create rough boundary around the object

Source: http://www.markschulze.net/snakes/
Active Contour Segmentation

- Steps:
 - Calculate energy gradient between the current location of the boundary and its neighboring pixels
 - Expand or contract the boundary based on the gradient

Source: http://www.markschulze.net/snakes/
Active Contour Segmentation

- **Advantages:**
 - Good for segmenting and tracking objects with deformable motion and clear boundaries
 - Motion information can be extracted from the contour

- **Disadvantage:**
 - Relatively slow
 - Ill-suited for situations where your regions do not have clearly defined boundaries
Watershed Segmentation

- What is a watershed?
 - A ridge that divides different areas that different rivers and streams drain into
- What is a catchment basin?
 - An area that collects water within an area and drains into a body of water (e.g., sea, ocean, river, etc.)
- What does this have to do with segmentation?!
Watershed Segmentation

- Idea:
 - Let's treat bright areas as having high elevation and dark areas as having low elevation.
 - Let's treat boundaries between regions as watersheds and the local minimas of the regions as catchment basins.

Source: The MathWorks
Watershed Segmentation

• Idea:
 – Suppose we took a water hose and pour water into the catchment basins until they are full of water
 – Each of these filled catchment basins become the individual regions that you wish to segment!
 – Small regions can be merged into larger regions by continuing to pour water into the basins and overflow the smaller basins until they form a larger basin
Watershed Segmentation

- **Advantages:**
 - Efficient
 - Simple conceptually

- **Disadvantages:**
 - How much water do I pour?
 - Too little water leads to over-segmentation (too many remaining regions)
 - Too much water leads to under-segmentation (keep pouring water and the whole image becomes one big region)