
SYDE 575: Introduction to
Image Processing

Image Compression
Part 2: Variable-rate image compression

(Huffman Coding)

Dealing with quantized DCT
coefficients

● After run-length encoding, what do we do
with the run-length encoded coefficients?

● Answer: Perform variable-length coding to
further reduce the amount of data
redundancy in the image

● As such, the data size of the image will
vary based on the underlying image
characteristics

Recall: Variable Length Coding

● Decrease code length as probability of
occurrence increases

● Can achieve much lower coding
redundancy by reducing the number of bits
needed to store data in an image

● Problem: how do we actually determine
what code to use?
– One set of code may not be well-suited for

all images

Data-adaptive Variable Length
Coding

● Idea: change the set of codes used to
compress an image based on the
underlying image characteristics to achieve
better compression specifically for the
image

● One of the most popular and commonly
used approach: Huffman Coding

Huffman Coding

● Goal: Build minimal length encodings
based on frequency of occurrences in the
image

● Steps:
– 1. Determine frequency of occurrences for

each possible value in the image
– 2. Construct Huffman tree
– 3. Encode image based on codes

generated from Huffman tree

Huffman Coding

● 1. Determine frequency of occurrences for
each possible value in the image

8 6

16

3 2

0 2 3 6 10

Value

Number of
occurences

Huffman Coding

● 2. Construct Huffman Tree
– Huffman Trees are binary trees where:

● Root node has highest probability of
occurrence

● Lowest leaf nodes have the lowest
probability of occurrence

● Probability of occurrence decreases as
we traverse down the tree

Huffman Tree Construction

● Step 1. Take the two lowest frequencies as
the leaf nodes and the sum of the
frequencies as their parent node

8 6

16

3 2

0 2 3 6 10

Value

Number of
occurences 2 3

2+3=5

Huffman Tree Construction

● Step 2. Compare value of the parent node
with next lowest frequency
– Lower of the two becomes left child node
– Higher of the two becomes right child node
– Sum of the two becomes parent node

Huffman Tree Construction

● Step 2.

8 6

16

3 2
0 2 3 6 10

Value

Number of
occurences

2 3

5 6

5+6=11

Huffman Tree Construction

● Step 3. Repeat step 2 until all values have
been used

8 6

16

3 2
0 2 3 6 10

Value

Number of
occurences

2 3

5 6

118

19

Huffman Tree Construction

● Step 3. Repeat step 2 until all values have
been used

8 6

16

3 2
0 2 3 6 10

Value

Number of
occurences

2 3

5 6

118

1916

35

Huffman Tree Construction

● Step 4. Assign '1'
to the left child
node and '0' to
right child node

2 3

5 6

118

1916

35
1 0

1 0

1 0

1 0

Huffman Tree Construction

● Step 5. Replace
leaf nodes with
their corresponding
values

10 6

5 2

110

193

35
1 0

1 0

1 0

1 08 6

16

3 2
0 2 3 6 10

Value

Number of
occurences

Huffman Tree Construction

● Step 6. Compute
set of codes from
Huffman tree by
traversing tree

10 6

5 2

110

193

35
1 0

1 0

1 0

1 0

Value Code
0
2
3
6
10

01
000
1

0010
0011

Compression Efficiency

● For the above code,

1

0
() ()

(0.2286)(2)+(0.1714)(3)+(0.4571)(1)+(0.0857)(4)+(0.0571)(4)
=2

L

avg k k
k

L l r pr r
−

=

=

=

∑

● This gives us a compression ratio of:
– 8 bits per coefficient/2 bits per coefficient =

4:1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

