
SYDE 575: Introduction to 
Image Processing

Image Compression
Part 2: Variable-rate image compression

(Huffman Coding)



Dealing with quantized DCT 
coefficients

● After run-length encoding, what do we do 
with the run-length encoded coefficients?

● Answer: Perform variable-length coding to 
further reduce the amount of data 
redundancy in the image

● As such, the data size of the image will 
vary based on the underlying image 
characteristics



Recall: Variable Length Coding

● Decrease code length as probability of 
occurrence increases

● Can achieve much lower coding 
redundancy by reducing the number of bits 
needed to store data in an image

● Problem: how do we actually determine 
what code to use?
– One set of code may not be well-suited for 

all images 



Data-adaptive Variable Length 
Coding

● Idea: change the set of codes used to 
compress an image based on the 
underlying image characteristics to achieve 
better compression specifically for the 
image

● One of the most popular and commonly 
used approach: Huffman Coding



Huffman Coding

● Goal: Build minimal length encodings 
based on frequency of occurrences in the 
image

● Steps:
– 1. Determine frequency of occurrences for 

each possible value in the image
– 2. Construct Huffman tree
– 3. Encode image based on codes 

generated from Huffman tree



Huffman Coding

● 1. Determine frequency of occurrences for 
each possible value in the image
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Huffman Coding

● 2. Construct Huffman Tree
– Huffman Trees are binary trees where:

● Root node has highest probability of 
occurrence

● Lowest leaf nodes have the lowest 
probability of occurrence

● Probability of occurrence decreases as 
we traverse down the tree



Huffman Tree Construction

● Step 1. Take the two lowest frequencies as 
the leaf nodes and the sum of the 
frequencies as their parent node
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Huffman Tree Construction

● Step 2. Compare value of the parent node 
with next lowest frequency
– Lower of the two becomes left child node
– Higher of the two becomes right child node
– Sum of the two becomes parent node



Huffman Tree Construction

● Step 2. 
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Huffman Tree Construction

● Step 3. Repeat step 2 until all values have 
been used 
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Huffman Tree Construction

● Step 3. Repeat step 2 until all values have 
been used 
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Huffman Tree Construction

● Step 4. Assign '1' 
to the left child 
node and '0' to 
right child node 
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Huffman Tree Construction

● Step 5. Replace 
leaf nodes with 
their corresponding 
values 
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Huffman Tree Construction

● Step 6. Compute 
set of codes from 
Huffman tree by 
traversing tree
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Compression Efficiency

● For the above code, 
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● This gives us a compression ratio of:
– 8 bits per coefficient/2 bits per coefficient = 

4:1
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