SYDE 575: Introduction to
Image Processing

Image Compression

Part 2: Variable-rate image compression
(Huffman Coding)



Dealing with quantized DCT
coefficients

» After run-length encoding, what do we do
with the run-length encoded coefficients?

* Answer: Perform variable-length coding to
further reduce the amount of data
redundancy in the image

* As such, the data size of the image will
vary based on the underlying image
characteristics



Recall: Variable Length Coding

* Decrease code length as probability of
occurrence increases
» Can achieve much lower coding
redundancy by reducing the number of bits
needed to store data in an image
* Problem: how do we actually determine
what code to use?
- One set of code may not be well-suited for
all images



I Data-adaptive Variable Length
I Coding

compress an image based on the
underlying image characteristics to achieve
better compression specifically for the
image

* One of the most popular and commonly
used approach: Huffman Coding

I  |dea: change the set of codes used to



I » Goal: Build minimal length encodings

Huffman Coding

based on frequency of occurrences in the
image
o Steps:
- 1. Determine frequency of occurrences for
each possible value in the image
- 2. Construct Huffman tree
- 3. Encode image based on codes
generated from Huffman tree



* 1. Determine frequency of occurrences for
I each possible value in the image

Huffman Coding

A

Number of 16

occurences




I o 2. Construct Huffman Tree

Huffman Coding

- Huffman Trees are binary trees where:
* Root node has highest probability of
occurrence
» Lowest leaf nodes have the lowest
probability of occurrence
* Probability of occurrence decreases as
we traverse down the tree



Huffman Tree Construction

« Step 1. Take the two lowest frequencies as
the leaf nodes and the sum of the
frequencies as their parent node

Number of
occurences

A

16




I Huffman Tree Construction
« Step 2. Compare value of the parent node
I with next lowest frequency

- Lower of the two becomes left child node

- Higher of the two becomes right child node
- Sum of the two becomes parent node



» Step 2.




« Step 3. Repeat step 2 until all values have
been used

Number of
occurences I




« Step 3. Repeat step 2 until all values have

been used

s

A @

Number of /

occurences I K ‘
O 2 3 6 10

Value




» Step 4. Assign '1°
to the left child
node and '0' to
right child node




Huffman Tree Construction

« Step 5. Replace
leaf nodes with
their corresponding

values
A

Number of 16
occurences




Huffman Tree Construction

e Step 6. Compute
set of codes from
Huffman tree by
traversing tree

Value Code
0 01
2 000
3 1
6 0010
10 0011




I Compression Efficiency

I * For the above code,

L-1

L, = Z I(r,) pr(n,)

- (0.22é6)(2)+(0.1714)(3)+(o.4571)(1)+(0.0857)(4)+(0.0571)(4)
=2

* This gives us a compression ratio of:

- 8 bits per coefficient/2 bits per coefficient =
4:1



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

