
SYDE 575: Introduction to
Image Processing

Image Compression
Part 2: Example of DXTC

and 3Dc

Example of DXTC

● Suppose we are
given a color texture
represented in
R8G8B8 format.

(R,G,B)=(192,150,128)

Example of DXTC

● Divide image into 4x4 blocks

(188,
146,
124)

(183,
143,
118)

(188,
146,
124)

(187,
145,
123)

(186,
144,
122)

(187,
142,
121)

(187
142,
121)

(184,
144,
119)

(186,
144,
122)

(187,
142,
121)

(187
142,
121)

(184,
144,
119)

(182,
142,
117)

(186,
144,
122)

(187,
142,
121)

(187
142,
121)

Example of DXTC

● Store two 16-bit representative color values C0
(high) and C1 (low) in R5G6B5 format

(188,
146,
124)

(183,
143,
118)

(188,
146,
124)

(187,
145,
123)

(186,
144,
122)

(187,
142,
121)

(187
142,
121)

(184,
144,
119)

(186,
144,
122)

(187,
142,
121)

(187
142,
121)

(184,
144,
119)

(182,
142,
117)

(186,
144,
122)

(187,
142,
121)

(187
142,
121)

(R,G,B)=(24,37,16) C0

(R,G,B)=(23,36,15) C1

(R,G,B)=(188,146,124)

(R,G,B)=(182,142,117)

Example of DXTC

● Compute two additional color values
● (e.g., using simple interpolation)

(R,G,B)=(24,37,16) C0

(R,G,B)=(23,36,15) C1

(R,G,B)=(23.67,36.67,15.67) C2

(R,G,B)=(23.33,36.33,15.333)C3

Example of DXTC

Assign a value from 0 to 3 to each pixel based
on closest color value

(188, 146, 124)

(R,G,B)=(24,37,16) C0

(R,G,B)=(23,36,15) C1

(R,G,B)=(23.67,36.67,15.67) C2

(R,G,B)=(23.33,36.33,15.333)C3
(23.6, 36.6 15.6)

2

Example of DXTC

To decode, replace values from lookup table
with one of the four color values

(23.67, 36.67
15.67)

(R,G,B)=(24,37,16) C0

(R,G,B)=(23,36,15) C1

(R,G,B)=(23.67,36.67,15.67) C2

(R,G,B)=(23.33,36.33,15.333)C3

(189, 146,125)

2

Normal Mapping

● Complex 3D models in a scene provide a
greater sense of realism within a 3D
environment

● However, it is expensive from both a
computational and memory perspective to
process such complex 3D models with high
geometric detail

● Solution: use normal mapping to give the
sense that there is more geometric detail by
changing lighting based on supposed
geometry

Normal Mapping

Creating Normal Maps

● Create high resolution model and a
corresponding low resolution model you
want to use

● Cast ray from each texel on low-res model
● Find intersection of ray with high-res model
● Save the normal from high-res model where

the ray intersects

Normal Mapping

3Dc

● Each pixel in a normal map has three
values (x,y,z), which represent a normal
vector

● The x,y, and z coordinates of a normal
vector are independent from each other

● This makes DXTC poorly suited for
compressing normal maps since it relies on
inter-channel correlations

● Solution: 3Dc, an extension of BTC for
normal maps

How does 3Dc work?

● Instead of operating on all channels
together, treat x, y, and z coordinate
channels separate from each other

● In most systems, all normal vectors are unit
vectors with a length of 1

● Also, z component assumed to be positive
since it should point out of the surface

How does 3Dc work?

● Idea: Instead of storing z, compute z based
on x and y

● Since z is not stored, storage requirements
have effectively been reduced by 1/3!

How does 3Dc encoding work?

● Steps:
– Discard z channel
– For the x and y channels, divide normal

map into 4x4 blocks
– For each block, store two 8-bit

representative coordinate values (V0 and
V1)

– Compute 6 intermediate coordinate
values by using simple linear
interpolation between V0 and V1

How does 3Dc encoding work?

● Steps:
– Assign a value from 0 to 7 to each pixel

based on the closest of the 8 coordinate
values V0,V1,...,V7

● Creates a 4x4 3-bit lookup table for
storage

How does 3Dc decoding work?

● Steps:
– For each block in the x and y channels,

replace values from lookup table with
one of the 8 coordinate values (2 stored
values and 6 interpolated values)

– Compute z based on x and y to get all
three coordinates for each normal vector

3Dc Compression Rate

● Suppose we are given an 4x4 normal map,
with each pixel represented by x, y, and z
values ranging from 0 to 2^16-1 each.

● The amount of bits required to store this
image in an uncompressed format is
4x4x(3x16bits)=768 bits

● The bit rate of the normal map in an
uncompressed format is 48 bpp (bits per
pixel)

3Dc Compression Rate

● Supposed we compress the normal map
using 3Dc

● The high and low representative coordinate
values V0 and V1 each require 8 bits

● Each value in the 4x4 lookup table
represents 8 possible values, thus requiring
4x4x3bit=48 bits

3Dc Compression Rate

● 2 of the three channels must be stored (i.e.,
2 lookup tables, 2 sets of V0 and V1, etc.)

● The amount of bits required to store this
color image in 3Dc compressed format is
(2x8bits+48bits)x2=128 bits

● The bit rate of the normal map in a 3Dc
compressed format is 128/16=8bpp

● Effective compression rate for 3Dc in this
case is:
– 48/8=6:1 compression

3Dc Compression Results

