
SYDE 575: Introduction to 
Image Processing

Image Compression
Part 2: Example of DXTC

and 3Dc



Example of DXTC

● Suppose we are 
given a color texture 
represented in 
R8G8B8 format.

(R,G,B)=(192,150,128)



Example of DXTC

● Divide image into 4x4 blocks
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Example of DXTC

● Store two 16-bit representative color values C0 
(high) and C1 (low) in R5G6B5 format
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(R,G,B)=(24,37,16) C0

(R,G,B)=(23,36,15) C1

(R,G,B)=(188,146,124)

(R,G,B)=(182,142,117)



Example of DXTC

● Compute two additional color values
● (e.g., using simple interpolation)

(R,G,B)=(24,37,16) C0

(R,G,B)=(23,36,15) C1

(R,G,B)=(23.67,36.67,15.67) C2

(R,G,B)=(23.33,36.33,15.333)C3



Example of DXTC

Assign a value from 0 to 3 to each pixel based 
on closest color value

(188, 146, 124)

(R,G,B)=(24,37,16) C0

(R,G,B)=(23,36,15) C1

(R,G,B)=(23.67,36.67,15.67) C2

(R,G,B)=(23.33,36.33,15.333)C3
(23.6, 36.6 15.6)
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Example of DXTC

To decode, replace values from lookup table 
with one of the four color values

(23.67, 36.67 
15.67)

(R,G,B)=(24,37,16) C0

(R,G,B)=(23,36,15) C1

(R,G,B)=(23.67,36.67,15.67) C2

(R,G,B)=(23.33,36.33,15.333)C3

(189, 146,125 )
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Normal Mapping

● Complex 3D models in a scene provide a 
greater sense of realism within a 3D 
environment

● However, it is expensive from both a 
computational and memory perspective to 
process such complex 3D models with high 
geometric detail

● Solution: use normal mapping to give the 
sense that there is more geometric detail by 
changing lighting based on supposed 
geometry



Normal Mapping



Creating Normal Maps

● Create high resolution model and a 
corresponding low resolution model you 
want to use

● Cast ray from each texel on low-res model
● Find intersection of ray with high-res model
● Save the normal from high-res model where 

the ray intersects



Normal Mapping



3Dc

● Each pixel in a normal map has three 
values (x,y,z), which represent a normal 
vector

● The x,y, and z coordinates of a normal 
vector are independent from each other

● This makes DXTC poorly suited for 
compressing normal maps since it relies on 
inter-channel correlations

● Solution: 3Dc, an extension of BTC for 
normal maps



How does 3Dc work?

● Instead of operating on all channels 
together, treat x, y, and z coordinate 
channels separate from each other

● In most systems, all normal vectors are unit 
vectors with a length of 1

● Also, z component assumed to be positive 
since it should point out of the surface



How does 3Dc work?

● Idea: Instead of storing z, compute z based 
on x and y

● Since z is not stored, storage requirements 
have effectively been reduced by 1/3!



How does 3Dc encoding work?

● Steps:
– Discard z channel
– For the x and y channels, divide normal 

map into 4x4 blocks
– For each block, store two 8-bit 

representative coordinate values (V0 and 
V1)

– Compute 6 intermediate coordinate 
values by using simple linear 
interpolation between V0 and V1



How does 3Dc encoding work?

● Steps:
– Assign a value from 0 to 7 to each pixel 

based on the closest of the 8 coordinate 
values V0,V1,...,V7

● Creates a 4x4 3-bit lookup table for 
storage



How does 3Dc decoding work?

● Steps:
– For each block in the x and y channels, 

replace values from lookup table with 
one of the 8 coordinate values (2 stored 
values and 6 interpolated values)

– Compute z based on x and y to get all 
three coordinates for each normal vector



3Dc Compression Rate

● Suppose we are given an 4x4 normal map, 
with each pixel represented by x, y, and z 
values ranging from 0 to 2^16-1 each.

● The amount of bits required to store this 
image in an uncompressed format is 
4x4x(3x16bits)=768 bits

● The bit rate of the normal map in an 
uncompressed format is 48 bpp (bits per 
pixel)



3Dc Compression Rate

● Supposed we compress the normal map 
using 3Dc

● The high and low representative coordinate 
values V0 and V1 each require 8 bits

● Each value in the 4x4 lookup table 
represents 8 possible values, thus requiring 
4x4x3bit=48 bits



3Dc Compression Rate

● 2 of the three channels must be stored (i.e., 
2 lookup tables, 2 sets of V0 and V1, etc.)

● The amount of bits required to store this 
color image in 3Dc compressed format is  
(2x8bits+48bits)x2=128 bits

● The bit rate of the normal map in a 3Dc 
compressed format is 128/16=8bpp

● Effective compression rate for 3Dc in this 
case is:
– 48/8=6:1 compression



3Dc Compression Results


