SD 475 Image Processing

Fall 2011

Lab 3: Image Compression Friday, November 23th, 2011

Note: All lab reports will be submitted electronically to the TA's email address a42kumar@uwaterloo.ca. For help on how to use the Matlab functions mentioned throughout the lab, please type 'help' followed by the function (e.g., help imread)

1 Overview

The goal of this lab is to provide some hands-on experience with fundamental image compression concepts and techniques. Due to the exponential growth in usage and storage of digital graphic media, image compression has been very important in helping reduce storage and transmission bandwidth problems. Many real-world applications depend on heavily on image compression, such as digital photography, video games, digital movie archival, and medical imaging. For this lab, we will study some fundamental image compression techniques such as chroma subsampling, image transform, and quantization.

The following images will be used for testing purposes:

- lena.tif
- peppers.png

All of these images are included with Matlab and can be loaded using the *imread* function.

2 Chroma Subsampling

First, we will study the effects of chroma subsampling on image quality and now it can be used to provide image compression. For this study, we will use the peppers image. First, let us convert the image from the RGB colorspace into the YCbCr colorspace using the rgb2ycbcr function. Plot each of the image channels (Y, Cb, and CR) separately.

1. Describe the Cb and Cr channel images. Why do they appear this way?

2. Compare the level of image detail in the Cb and Cr images with the Y channel image. Which contains more fine details? What does that say about the luma (Y) and chroma (Cb and Cr) channels?

Now, reduce the resolution of the chroma channels by a factor of 2 in both the horizontal and vertical directions and then upsample them back to the original resolution using bilinear interpolation. The imresize function will come in handy. Also, you will need to separate the color image into three separate images so you can operate on them independently. Recombine the original Y channel image and the two upsampled Cb and Cr images to create a new color image.

- 1. Compare the resulting image from chroma sub-sampling with the original image. How large are the visual differences?
- 2. Based on the resulting image, what can you say about chroma sub-sampling and its effect on image quality?

Let us study the effects of luma sub-sampling. Reduce the resolution of the luma (Y) channel by a factor of 2 in both the horizontal and vertical directions and then upsample it back to the original resolution using bilinear interpolation. Recombine the upsampled Y channel image and the original Cb and Cr images to create a new color image.

- 1. Compare the resulting image from luma sub-sampling with the original image. How large are the visual differences?
- 2. Compare the resulting image from luma sub-sampling with the image produced using chroma sub-sampling. Which method performs better? Why?
- 3. Based on the resulting image, what can you say about luma sub-sampling and its effect on image quality?

3 Image Transform

Let us now study the discrete cosine transform (DCT) and the characteristics of an image in the transform domain. The DCT decomposes an image into a series of sinusoids with different amplitudes and frequencies. In block transform coding algorithms, the image is divided into smaller sub-images and each sub-image is transformed using an image transform separately. Perhaps the most popular image transform for block transform coding is the DCT. One efficient method for computing the DCT of a sub-image is to use the DCT transform matrix. The DCT transform matrix can be constructed using dctmtx function. For this study, we will use the 8×8 DCT transform matrix T and use the Lena image f as the test image. Plot the 8×8 DCT transform matrix.

1. What does each row of the DCT transform matrix represent? Look at the pattern for each row. If you still don't see it, try plotting each of the rows as a 1-D function.

Now apply the DCT transformation matrix on each 8×8 sub-image. This can be performed as follows:

```
F_{\text{trans}} = \text{floor(blkproc(f-128,[8 8],'P1*x*P2',T,T'))};
```

Plot the DCT of the 8×8 sub-image with top-left corner at (x,y)=(297,81) and the DCT of the sub-image with top-left corner at (x,y)=(1,1).

- 1. Describe the energy distribution of the DCT of the sub-images. What does each pixel represent? Explain why DCT would be useful for image compression in the context of the DCT energy distribution.
- 2. Compare the DCT of the two sub-images. How are they different? Why? Explain in the context of the image characteristics at those locations and the DCT energy distribution.

How let's try discarding all but 10 of the DCT coefficients in each sub-image and then reconstructing the image. This can be done by first applying a threshold to the sub-images,

and then performing an inverse DCT on the sub-images

```
f_thresh = floor(blkproc(F_thresh,[8 8],'P1*x*P2',T',T))+128;
```

Plot the reconstructed image and the corresponding PSNR.

- 1. Describe how the reconstructed image looks compared to the original image. Why does it look this way?
- 2. What artifact is most prominent in the image? Why does this artifact appear?
- 3. What conclusions can you draw about the DCT in terms of image compression? Does it work well? If yes, why does it work well?

4 Quantization

One of the most important steps in lossy image compression stage is the quantization step. It is highly desired that the transform coefficients of a sub-image is quantized in such a way that the amount of data needed to represent the image is greatly reduced without causing undesirable artifacts. Let us know study the effects of different levels of quantization on image quality. For this study, the Lena image will be used as the test image. First, we will construct the quantization matrix used the JPEG standard:

```
Z = [16 \ 11 \ 10 \ 16 \ 24 \ 40 \ 51 \ 61; \ 12 \ 12 \ 14 \ 19 \ 26 \ 58 \ 60 \ 55; \ 14 \ 13 \ 16 \ 24 \ 40 \ 57 \ 69 \ 56; \ 14 \ 17 \ 22 \ 29 \ 51 \ 87 \ 80 \ 62; \ 18 \ 22 \ 37 \ 56 \ 68 \ 109 \ 103 \ 77; \ 24 \ 35 \ 55 \ 64 \ 81
```

Now perform the 8×8 DCT transform on the Lena sub-images (remember to subtract 128). To perform quantization on the sub-images, divide the sub-images by Z, and then round the resulting quantized DCT. To reconstruct the image, multiply the quantized DCT sub-images by Z and then perform the inverse DCT transform on the sub-images (remember to add 128). Plot the resconstructed image and the corresponding PSNR. Now perform the above quantization process again on the image, but this time using 3Z, 5Z, and 10Z. Plot the reconstructed images and the corresponding PSNR.

- 1. What happens to the DCT coefficients when quantization is performed? What effect does it have on image quality?
- 2. Compare the reconstructed image produced using 3Z with the original image. Why does the reconstructed image look this way?
- 3. Compare the reconstructed images produced by the different levels of quantization, as well as the PSNR for each reconstructed image. What happens as the level of quantization increases?
- 4. Which artifact becomes more prominent as the level of quantization increase? Why?
- 5. What conclusions can you draw about the quantization process? Explain in the context of the trade-off between compression performance and image quality.

5 Report

Include in your report:

- A brief introduction.
- Printouts of pertinent graphs and images (properly labelled).
- Printouts of code
- Include responses to all questions.
- A brief summary of your results with conclusions.