
EFFICIENT DEBLOCKING OF BLOCK-TRANSFORM COMPRESSED
IMAGES AND VIDEO USING SHIFTED THRESHOLDING

Alexander Wong and William Bishop

Department of Electrical and Computer Engineering, University of Waterloo
Waterloo, Ontario, Canada

a28wong@engmail.uwaterloo.ca, wdbishop@uwaterloo.ca

ABSTRACT
Image and video compression are active areas of research
due to the increasing demand for efficient storage of
visual data in a wide variety of fields. Popular image
compression schemes are often based on block-transform
coding. Block-transform coding is susceptible to
blocking artifacts, particularly at low bit-rates due to
quantization errors. This paper addresses this problem by
presenting an algorithm based on shifted thresholding that
reduces blocking artifacts in block-transform compressed
images and video. The algorithm is designed to be
hardware-efficient and well-suited for parallel hardware
implementation, using purely integer computations
without the need for integer division. Experimental
results demonstrate good subjective quality improvements
that are comparable with previous work while
maintaining a low computational complexity.

KEY WORDS
deblocking, block-transform coding, shifted thresholding

1 Introduction

Image and video compression are active areas of research
given the increasing need for the efficient storage of
visual data in a wide variety of fields, ranging from
medical imaging to multimedia systems. Popular
compression schemes are based on block-transform
coding. These include still image compression schemes
such as JPEG [1], video compression schemes such as
MPEG [2-3] and recent video compression schemes such
as H.264/AVC [4]. Block-transform codes that utilize the
Discrete Cosine Transform (DCT) are widely used.
Blocks are processed independently so block-transform
codes are simple to implement and require minimal
additional storage.

One of the major drawbacks of block-transform coding is
the fact that it also introduces blocking artifacts due to
quantization errors at the block boundaries. These
artifacts are very noticeable and degrade image quality,
particularly when images are compressed at a high
compression rate. To deliver high-quality image
compression using block-transform codes, the reduction
of blocking artifacts is critical.

A large number of methods have been proposed to reduce
blocking artifacts in block-transform compressed images
and video. These deblocking methods include the
following:

1) Projections onto convex sets (POCS) methods [5-7]
2) Spatial block boundary filtering methods [8-9]
3) Wavelet filtering methods [10]
4) Statistical modeling methods [11]
5) Constrained optimization methods [12]

Some of the more effective deblocking techniques in
recent development are those based on shifted transforms.
The general technique was first introduced by Nosratinia
with the re-application of shifted JPEG compressions
[13]. This technique has since been modified for
improved deringing [14] and it has been applied to
wavelet coders to reduce compression artifacts [15].
Shifted transform algorithms have been shown to offer
improved performance over traditional techniques based
on POCS and wavelet transforms. A structural overview
of the deblocking algorithms based on shifted transforms
is shown in Figure 1. The decompressed image is shifted
based on n shift patterns and the output of these shifts
Si,…,n are transformed into another domain using
transform operator T. The shifted transforms are then
filtered using operator F, inverse transformed with T-1 and
inverse-shifted based on the corresponding shift pattern.
Finally, the images are averaged together to form the final
output image. In the simplified version of a shifted JPEG
transform [13], the transform operator T is the DCT
transform into the spatial frequency domain, the filter
operator F is a combined quantization/dequantization
process based on a quantization matrix, the averaging
process is a simple unweighted average of the inverse-
shifted images, and a total of 64 shifts are performed. An
improved weighted averaging scheme was proposed [14]
to adapt to the input image content.

While available algorithms based on shifted transforms
are effective at reducing blocking artifacts, there are some
computational drawbacks. While less computationally
expensive than methods based on optimization
techniques, in its basic implementation, such algorithms

require 64 iterations of DCT transforms, inverse DCT
(IDCT) transforms, quantization and dequantization
operations per 8×8 block, each requiring fixed-point or
floating-point arithmetic operations. The goal of the
proposed algorithm is to reduce the computational
complexity of the deblocking algorithm while
maintaining visual quality.

The main contribution of this paper is the introduction of
a hardware-efficient algorithm for image and video
deblocking. This algorithm utilizes integer-based shifted
transforms and frequency-domain thresholding to
enhance deblocking performance. This algorithm also
utilizes an improved weighted averaging technique to
enhance visual quality. In this paper, the proposed
algorithm is described and explained in detail in Section
2. The computational costs are analyzed in Section 3.
Finally, experimental results comparing the proposed
algorithm to the algorithm proposed by Nosratinia for
block-transform compressed images are discussed in
Section 4. Finally, conclusions are drawn in Section 5.

2 Proposed Deblocking Algorithm

The proposed deblocking algorithm utilizes the concept
of shifted transforms in a practical way to reduce
computational complexity while preserving visual quality.
Using a 5-stage combination of integer transforms,
frequency-domain thresholding, and weighted averaging,
the proposed algorithm is hardware-efficient, delivers
good performance, and provides a high level of visual
quality. Thus, the algorithm is suitable for efficient block
artifact reduction in real-time image and video
applications. A general overview of the algorithm is
shown in Figure 2.

2.1 Shifting Stage

During this stage, the input image is shifted based on four
shift patterns: (Δx, Δy) = {(-3,-3),(-1,-1),(1,1),(3,3)},

where (Δx, Δy) represents the shift in the x and y
directions. These patterns are illustrated in Figure 3.
This produces a total of four shifted images. Therefore,
the actual deblocking process is repeated a total of four
times, one for each shifted image. Results during testing
have shown that this configuration provides good
deblocking results for the proposed algorithm while
minimizing the number of computations needed. This is
significantly less than other algorithms of this type so the
computational requirements of this stage are effectively
reduced.

2.2 Transform Stage

During this stage, the shifted images are transformed to
the frequency domain. The basic DCT forward transform
on an input block X is given by:

)(TBXBY = (1)

where X is the input block, B is the DCT transform
matrix, and BT is the transpose of the DCT transformation
matrix.

To reduce the computational complexity required by the
proposed algorithm, an integer transform is proposed
based on a scaled integer approximation of the DCT
transform in the form of:

)Round(BM α= (2)

Figure 1. Structure of deblocking algorithms based on shifted
transforms

Figure 3. Example of some shift patterns

Figure 2. Overview of proposed algorithm

where α is the scaling coefficient and B is the DCT
transformation matrix. When an image is transformed
from the spatial domain to the frequency domain using
the DCT transform, there is an approximate magnitude
gain of 8α2 if the ceiling of the integer approximation is
taken. In the case of 8 bits per channel, which is common
in current image representations, the total number of bits
needed becomes log2(8α2)+8 bits. As most
microprocessors are capable of 32-bit integer
computations, the maximum allowed value of α that is a
power of 2 to avoid the need for division is α=1024, as
log2(8(1024)2)+8=31 bits. For the proposed algorithm, a
value of α=512 is used and so a shift of 18 bits is needed
to compensate for the scaling. To reduce the number of
multiplications needed for the transform, a number of
elements in the matrix are set to powers of 2 while others
are readjusted to compensate for this change. The
proposed 8×8 integer transform matrix M is given by:

181 181 181 181 181 181 181 181
256 206 128 64 64 128 206 256
256 64 64 256 256 64 64 256
206 64 256 128 128 256 64 206
181 181 181 181 181 181 181 181
128 256 64 206 206 64 256 128
64 256 256 64 64 256 256 64
64 128 206 256 256 206

− − − −
− − − −

− − − −
Μ =

− − − −
− − − −
− − − −
− − − 128 64

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (3)

The transformation matrix can be further decomposed
into a scalar multiplication of two matrices, P and E. The
final forward transform is given by the following
equation:

))((log)()(2
2 α>>⊗⊗= TT EEPXPY (4)

where ⊗ indicates a scalar multiplication, X is the input
block, P is the integer transform matrix, PT is the
transpose of the integer transformation matrix, (E⊗ET)
is the scaling transformation matrix, α is the scaling
coefficient, and >> indicates a logical bit shift right of
the appropriate size. For the proposed algorithm, a shift
of 18 bits is used since α2 = 218. P and (E⊗ET) are given
by:

1 1 1 1 1 1 1 1
256 206 128 64 64 128 206 256
256 64 64 256 256 64 64 256
206 64 256 128 128 256 64 206
1 1 1 1 1 1 1 1

128 256 64 206 206 64 256 128
64 256 256 64 64 256 256 64
64 128 206 256 256 206 128 64

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥− − − −⎢ ⎥Ρ = ⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

 (5)

32761 181 181 181 32761 181 181 181
181 1 1 1 181 1 1 1
181 1 1 1 181 1 1 1
181 1 1 1 181 1 1 1

()
32761 181 181 181 32761 181 181 181
181 1 1 1 181 1 1 1
181 1 1 1 181 1 1 1
181 1 1 1 181 1 1 1

Τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ε⊗Ε = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6)

The transformation matrices P, PT, and (E⊗ET) are
static. These matrices may be pre-computed to deliver
improved computational performance. The use of an
integer transform allows the entire deblocking process to
be implemented using purely integer computations and no
division operations, thereby reducing the computational
complexity required to perform this stage of the
algorithm.

2.3 Thresholding Stage

During this stage, the transformed images are subjected to
a threshold in the spatial frequency domain using a
threshold matrix T, which is given by:

1>>=QT (7)

where “>>1” represents a logical bit shift right of 1 bit
and Q is the quantization matrix used to compress the
image. The Q matrix is easily retrieved from the media
itself as it is used to decompress the image.

All frequency coefficients below the corresponding
threshold value in the threshold matrix are set to zero.
The threshold matrix used in the algorithm is a scaled
integer approximation of the quantization matrix used to
decompress the image. This threshold matrix allows the
decompressed image to be adaptively filtered depending
on the image quality. This approach is designed to
attenuate the high frequencies. Shifting the image
according to several shifting patterns and then applying
block-based threshold filtering is similar to applying
threshold filtering on the original block boundaries at
various positions. Thus, this approach makes use of the
correlation between adjacent blocks and effectively
reduces the blocking artifacts exhibited at the boundaries.

2.4 Inverse Transform and Shifting Stage

After the transformed images have been threshold
filtered, the inverse transform of input block Y is given
by:

))((log)))(((2
2 α>>⊗⊗= PEEYPX TT (8)

where Y is the input block, P is the integer transform
matrix, PT is the transpose of the integer transformation
matrix, (E⊗ET) is the scaling transformation matrix, α is

the scaling coefficient, and >> indicates a logical bit shift
right that is used to compensate for scaling done in the
inverse transform.

Like the integer transform, a value of α=512 is used and
so a logical bit shift right of 18 bits is needed to
compensate for the scaling in the integer inverse
transform. Finally, the shifted images are inverse-shifted
based on their corresponding shift pattern such that all the
images are aligned together.

2.5 Weighted Averaging Stage

Once the images have been inverse transformed and
inverse shifted, an unweighted averaging process is used
to combine the images, as given by:

2),(),(
4

1
>>⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=i
i yxyx IIdeblocked

 (9)

where x and y are the x and y coordinates relative to the
image, Ii is the image that was shifted using pattern i, and
“>>2” denotes a bit shift right of 2 bits.

While the thresholding process reduces blocking artifacts,
it also introduces a slight degradation to the areas that are
not subject to blocking artifacts. To remedy the
introduction of this degradation, a number of images with
different shift patterns are threshold filtered, effectively
introducing a different degradation to each image.
Averaging across the set of filtered images effectively
reduces the degradation while preserving the image
signal.

To avoid unnecessary blurring at pixels that are not near
the block boundaries, the deblocked averaged image
Ideblocked and the input image with blocking artifacts Iblocked
are combined using a distance-weighted averaging
process to produce the final deblocked output image. The
weights used in the weighted averaging process are based
on the Euclidean distance between the pixel under
evaluation and the center of its corresponding block. The
weights are given by the following equation:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ββσ

y))(x,Max(
),()(Round),(

D
DWa

yxyx (10)

where x and y represent the x and y coordinates relative to
the block respectively, β and σ represent the lower bound
and upper bound of the weight range respectively, and
D(x, y) is the Euclidean distance. D(x, y) is given by the
following equation:

22)()(),(cycxyx −+−=D (11)

where x and y are the x and y coordinates relative to the
block respectively, and c is the closest pixel from the
center region of the block. In the case of an 8×8 block,
the center region is represented by the 2×2 block of pixels
at the center of the block. For the proposed algorithm, a
weight range of (β, σ) = (100, 256) is used. The weights
for Iblocked are then given by:

ao WW −=σ (12)

where σ is the upper bound of the weight range. Both
weight matrices Wa and Wo are static. These matrices are
pre-computed to improve performance. The final pixel
value in the output image block is given by:

)(log
),(),(

),(),(
),(2 σ>>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
yxyx

yxyx
yx

deblockeda

blockedo
output IW

IW
I (13)

where Ideblocked is the average deblocked image, Iblocked is
the input image with blocking artifacts, Wa and Wo are
the weight matrices for Ideblocked and Iblocked respectively,
and σ is the upper bound of the weight range. For a
weight range of (β, σ) = (100, 256), a logical bit shift
right of 8 bits is performed.

The distance-weighted average is designed such that
pixels near the block boundary where blocking artifacts
occur are more dependent on the average deblocked
image while pixels near the center where blocking
artifacts do not occur are more dependent on the input
image.

3 Computational Costs

A comparison between the computational complexity of
the proposed algorithm and the original Nosratinia
algorithm for JPEG compressed images illustrates the
clear performance benefits of the proposed algorithm.
The complexity of the proposed algorithm can be
measured based on the cost of the integer transform and
inverse transform operations. The integer transform used
by the proposed algorithm requires approximately 6.25
times fewer multiplications than the standard DCT
operation. This reduction is the result of multiplications
being replaced with bit shifts. Furthermore, the DCT and
IDCT are repeated 63 times in the original Nosratinia
algorithm, while the integer transform and inverse
transform are repeated only 4 times in the proposed
algorithm. Therefore, ignoring the computational
complexity differences between integer and fixed-point /
floating-point operations, the proposed algorithm uses
approximately 1% of the multiplications and 6.3% of the
additions needed for the Nosratinia algorithm. This
reduction in computational complexity makes the
proposed algorithm well-suited for the real-time
deblocking of compressed image and video sources.

4 Experimental Results

A comparison of the proposed algorithm and the original
Nosratinia algorithm designed for JPEG compressed
images [13] was conducted by both quantitative and
qualitative means. The algorithms were tested on 5
different JPEG-compressed images and video frames
from 2 different MPEG-compressed video clips. For a
quantitative comparison, the PSNR of the compressed
images and video frames were measured. The results are
shown in Table 1. It is observed from the quantitative
measurements that the PSNR gains using the proposed
algorithm are comparable with the original Nosratinia
algorithm, despite requiring significantly fewer
computations. The subjective results for Lena, Susi, and
Tennis after the application of the algorithm are shown in
Figures 4, 5, and 6 respectively. From a subjective
comparison of the resulting images, it can be observed
that the overall quality of the images and video frames
produced using the proposed algorithm is noticeably
superior to the original decompressed sources. Blocking
artifacts have been reduced while preserving edges. The
visual quality is comparable to that produced by the
Nosratinia algorithm.

5 Conclusions

In this paper, we have introduced a new method for
deblocking compressed image and video sources based on
the concept of shifted thresholding. The algorithm
reduces blocking artifacts in a computationally effective
manner. Experimental results show that overall visual
quality is noticeably improved when compared to the
decompressed image or video sources. This highly-
efficient algorithm is competitive with the original
Nosratinia algorithm. It is our belief that this method is
more suitable for implementation in digital multimedia
systems and consumer devices.

Acknowledgements

This research has been sponsored in part by Epson
Canada and the Natural Sciences and Engineering
Research Council of Canada.

References

[1] G. Wallace, The JPEG Still Picture Compression
Standard,” Communications of the ACM, 34(4), 1991, 30-
34.
[2] ISO/IEC 11172, Coding of Moving Pictures and
Associated Audio for Digital Storage Media Up to About
1.5 Mbits/s – Part 2: Video, 1993.
[3] ISO/IEC 13818-2, Generic Coding of Moving
Pictures and Associated Audio Information – Part 2:
Video, 1994.
[4] Joint Video Team of ITU-T and ISO/IEC JTC 1, Draft
ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification (ITU-T Rec. H.264
| ISO/IEC 14496-10 AVC), 2003.
[5] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos,
Projection-Based Spatially Adaptive Reconstruction of
Block-Transform Compressed Images, Transactions on
Image Processing, 4, 1995, 896-908.
[6] C. Weerasinghe, A. Liew, and H. Yan, Artifact
Reduction in Compressed Images Based on Region
Homogeneity Constraints Using the Project Onto Convex
Sets Algorithm, IEEE Transactions on Circuits and
Systems for Video Technology, 12(10), 2002, 891-897.
[7] H. Paek, R. C. Kim, and S. Lee, On the POCS-Based
Postprocessing Technique to Reduce Blocking Artifacts
in Transform Coded Images, IEEE Transactions on
Circuits and Systems for Video Technology, 8(3), 1998,
358–367.
[8] ISO/IEC 14496-2, MPEG-4 Video Verification Model
Version 18.0, 2001.
[9] J. Chou, M. Crouse, and K. Ramchandran, A Simple
Algorithm for Removing Blocking Artifacts in Block-
Transform Coded Images, IEEE Signal Processing
Letters, 5(2), 1998, 33-35.
[10] Z. Xiong, M. T. Orchard, and Y. Q. Zhang, A
Deblocking Algorithm for JPEG Compressed Images
Using Overcomplete Wavelet Representations, IEEE
Transactions on Circuits and Systems for Video
Technology, 7, 1997, 433-437.
[11] T. O’Rourke and R. L. Stevenson, “Improved Image
Decompression for Reduced Transform Coding Artifacts,
IEEE Transactions on Circuits and Systems for Video
Technology, 5(8), 1995, 298–304.
[12] S. Hong, Y.H. Lee, and W.C. Siu, Subband Adaptive
Regularization Method for Removing Blocking Artifacts,
Proceedings of the International Conference on Image
Processing, 1995, Washington, D. C., 523-527.

TABLE 1
IMPROVEMENTS IN PSNR ON COMPRESSED IMAGE AND

VIDEO SOURCES

PSNR Gain (dB) Image /
Video
Frame

PSNR
(in dB) Proposed

Algorithm
Nosratinia

Algorithm [13]
Images

Lena 31.13 0.94 1.06
Elaine 30.48 0.63 0.69
Mandrill 24.06 0.28 0.32
Peppers 31.16 0.84 0.93
Boat 28.85 0.74 0.76

Video Frames
Susi 34.80 0.91 0.91
Tennis 24.32 0.33 0.34

[13] A. Nosratinia, Enhancement of JPEG-Compressed
Images by Re-Application of JPEG, Journal of VLSI
Signal Processing Systems for Signal, Image, and Video
Technology, 27, 2001, 69-79.
[14] R. Samadani, A. Sundararajan, and A. Said,
Deringing and Deblocking DCT Compression Artifacts
with Efficient Shifted Transforms, Proceedings of the

International Conference on Image Processing, 2004,
Singapore, Republic of Singapore, 1799-1802.
[15] A. Nosratinia, "Postprocessing of JPEG-2000 Images
to Remove Compression Artifacts," IEEE Signal
Processing Letters, 10(10), 2003, 296-299.

Figure 4. Left: JPEG-compressed 512×512 Lena at PSNR of 31.13 dB

Center: Deblocked image using proposed algorithm
Right: Deblocked image using original Nosratinia algorithm

Figure 5. Left: MPEG-compressed Susi video frame at PSNR of 24.32 dB

Center: Deblocked image using proposed algorithm
Right: Deblocked image using original Nosratinia algorithm

Figure 6. Left: MPEG-compressed Tennis video frame at PSNR of 24.32 dB

Center: Deblocked image using proposed algorithm
Right: Deblocked image using original Nosratinia algorithm

